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Abstract—The purpose of this paper is to propose a distributed
control scheme to maximize area coverage by a mobile robot
network while ensuring reliable communication between the
members of the team. The information that is generated at the
sensors depends on the sensing capabilities of the sensors as
well as on the frequency at which events occur in their vicinity,
captured by appropriate probability density functions. This in-
formation is then routed to a fixed set of access points via a multi-
hop network whose links model the probability that information
packets are correctly decoded at their intended destinations. The
proposed distributed control scheme simultaneously optimizes
coverage and routing of information by decoupling coverage and
routing control. Specifically, optimization of the communication
variables is performed periodically in the dual domain. Then,
between communication rounds, the robots move according to
the solution of a distributed sequential concave program that
handles efficiently the introduced nonlinearities in the mobility
space. Our method is illustrated in computer simulations.

I. INTRODUCTION

The area coverage problem has recently received a lot
of attention and the related literature is quite extensive. In
[1], the authors propose a distributed controller based on
Lloyd’s algorithm for sensing a convex area. In this work,
it is assumed that the sensing performance degrades as the
distance from the sensor increases. The case where the robots
are equipped with range-limited sensors is discussed in [2].
Coverage optimization for anisotropic sensors is studied in
[3], [4], while [5]–[7] discuss coverage of non-convex areas.
Common in this literature on area coverage problems is that it
typically ignores the requirement that the information collected
by the robot sensors needs to be routed to a desired set of
destinations. In this paper, we provide a distributed solution
to the problem of joint coverage and communication control.

We assume a team of mobile robot sensors responsible
for covering a convex area of interest with the additional
requirement that the sensory information collected by the
robots can be efficiently routed to a desired set of fixed
access points (APs). The rate of information generated at every
sensor depends on the quality of sensing as a function of
the sensing range, as well as on the probability that events
occur in the vicinity of that sensor, captured by an appropriate
probability density function over the area of interest. On
the other hand, routing of this information to the APs is
via a dedicated multi-hop network whose links model the
probability that information packets are correctly decoded at
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their intended destinations. Unlike existing methods that focus
on preserving graph connectivity [8]–[11], our approach to
communication control employs more realistic communication
models, motivated by [12], [13]. The proposed distributed con-
trol scheme utilizes only information that is locally available
at the sensors in order to simultaneously optimize coverage
and routing of information to the APs. The key idea is to
decouple coverage and routing control and alternate between
optimization of the two objectives. In particular, given a
spacial configuration of the robots in the area of interest,
the communication variables are updated using a distributed
subgradient algorithm in the dual domain. Then, the robots
move in a direction that optimizes the coverage objective.
Robot motion is formulated as a distributed sequential concave
program, that allows us to handle nonlinearities in the mobility
space that are present due to the coverage objective and the
communication constraints. As the robots move, the optimal
solution in the communications space drifts, which introduces
a possible infeasibility gap in the primal variables. While
such an infeasibility gap persists, the affected robots remain
stationary until feasible routing variables are determined by
the optimization in the communications space.

The problem of simultaneous coverage and communication
control is also addressed in [14], although in a centralized
setting. A related problem that considers the minimization
of the aggregate information delivered directly, in one hop,
from the robots to a sink node is addressed in [15]. Multi-
hop communication in the context of coverage is considered
in [16] and [17]. These latter approaches differ from the one
proposed here in that we consider more realistic models of
wireless communication that involve routing of information
over a network of varying link reliabilities, and we also ensure
desired information rates that depend on the frequency with
which events occur in the sensors’ vicinity.

II. PROBLEM FORMULATION

Assume a team of N mobile robots responsible for the
sensing coverage of a convex and compact area A ⊂ R2

and for the transmission of packets of information to a fixed
set of K access points (APs). The positions of all nodes are
stacked in the vector x = [xT

1 , . . . ,x
T
i , . . . ,x

T
N+K ]T , where

i ∈ {1, ..., N} for the robots and i ∈ {N + 1, ..., N +K} for
the APs. The motion of the robots is assumed to be governed
by the first order differential equation

ẋi(t) = ui(t), i = 1, . . . , N, (1)

where ui ∈ R2 stands for the control input associated with
the i-th robot.



To achieve area coverage, each robot is equipped with an
isotropic sensor whose accuracy is captured by a radially
decreasing function f that is maximal at the sensor location
xi. In this context, a larger value of f means better accuracy.
In particular, we choose

f(xi,q) = e−‖q−xi‖2 . (2)

Moreover, let φ(q) : A → R+ be an integrable density
function representing the probability that an event takes place
at the point q ∈ A. Then, the coverage problem can be
formulated as follows:

maximize
x,W

H(x,W) =

N∑
i=1

∫
Wi

f(xi,q)φ(q)dq, (3)

where Wi is a subregion of A assigned to robot i for sensing
purposes and W = ∪Ni=1Wi denotes the collection of these
regions generated by the robots positioned at x.

The problem that we address in this paper is the opti-
mization of the objective H in (3), subject to communication
constraints required to ensure desired information flows from
the sensor robots to the access points (APs). In particular, let
R(xi,xj) be a link reliability metric denoting the probability
that a packet transmitted by the i-th robot is correctly decoded
by the j-th node. Assuming that the transmission rate of
the terminals’ radios is unity and common for all robots,
the effective transmission rate from i to j is also equal to
R(xi,xj). Moreover, let ri ∈ [0, 1] denote the normalized
average rate (information units per unit of time) at which
the i-th robot generates information. We assume that this rate
depends on both the sensing performance over the φ-weighted
area Wi and the probability that an event will occur at each
point q ∈ Wi so that

ri(xi,Wi) =

∫
Wi

f(xi,q)φ(q)dq. (4)

Packets generated at the terminal i are transmitted to ter-
minal j according to routing probability Tij representing the
probability that the i-th robot selects robot j as a destination
for its transmitted packets. Upon generation or arrival from
another robot, packets are assumed to be stored in a queue
at each robot and they leave this queue provided they are
transmitted and correctly decoded by any other node j. Thus,
the normalized rate at which packets leave the queue at the i-th
node and are conveyed to the j-th node is TijR(xi,xj), since
the transmission and the decoding process are two independent
events. Packets can be conveyed by the i-th robot to the
APs either directly if the probability TijR(xi,xj) for j ∈
{N + 1, . . . , N +K} is reasonably large or through a multi-
hop communication path. Then, the average rate at which
packets leave the i-th queue is routi =

∑N+K
j=1 TijR(xi,xj).

Similarly, the average rate at which packets arrive at the i-
th queue is rini = ri(xi,Wi) +

∑N
j=1 TjiR(xj ,xi). Note that

the APs can only receive information which explains the upper
limits in the sums that appear in rini and routi . A necessary
condition to ensure that the queue at node i empties infinitely
often with probability one is that rini ≤ routi . Therefore,

packets are almost surely eventually delivered to the APs as
long as

ci(xi,Wi,T) = routi − rini ≥ 0, ∀i ∈ {1, . . . , N}, (5)

where T ∈ RN(N+K) is the stack vector of all routing
probabilities Tij .

Note that the maximization of the coverage objective (3)
subject to the communication constraints (5) is an optimization
problem with respect to the robot positions xi, the routing
probabilities Tij , and the partition of the area in regions Wi.
In the absence of the constraints, it is well known that the
objective function H is maximized if the partition Wi is
chosen to be the Voronoi partition [18], denoted by Vi, of
the space; see Proposition 2.13 in [19]. On the other hand,
in the presence of the constraints, the Voronoi regions are
not necessarily feasible and, therefore, the feasible optimal
partition for the constrained problem is in general different
from the Voronoi partition. However, if we are able to ensure
feasibility of the Voronoi partition, then this partition will
be optimal for the constrained optimization problem. In our
problem, this is possible by appropriately selecting the routing
probabilities Tij .

Moreover, note that for a given spatial configuration x, the
set of constraints (5) may be satisfied by various routing vari-
ables Tij . However, introducing a strictly concave objective
function Vij(Tij) associated with the variable Tij , we can en-
sure uniqueness of the solution Tij . Incorporating in the opti-
mization problem (3) objective functions Vij(Tij), the routing
constraints (5), the probability constraint

∑N+K
j=1 Tij ≤ 1, and

replacing the partition W in the coverage objective H and in
the communication constraints by the Voronoi partition V we
obtain the following constrained optimization problem: 1

maximize
x,T

H(x) +

N∑
j=1

N+K∑
j=1

Vij(Tij) (6)

subject to ci(x,T) ≥ 0
N+K∑
j=1

Tij ≤ 1, 0 ≤ Tij ≤ 1,

where the constraints in (6) hold for all robots i ∈ {1, . . . , N}.
Note that for a fixed spatial configuration x, the reliabilities
R(xi,xj) are fixed and, therefore, the problem in (6) attains
a concave form. For the strictly concave function Vij(Tij),
we choose Vij = −wijT

2
ij encouraging the distribution of the

packets over different links [12].
Assume now that the network is initially deployed so that

the constraints (5) are satisfied. Then, in this paper we seek a
solution to the following problem:

1Comparing to (3) and (5), in (6) we have dropped the dependence of the
objective H and the constraints ci on the Voronoi partition V . The reason
is that, unlike any arbitrary partition W , the Voronoi partition is completely
determined by the robot positions x. Note also that for the computation of
the rate ri(x) in the constraint ci(x,T) ≥ 0 only information acquired by
the set of Delaunay neighbors is required.



Problem 1: Determine robot positions xi and routes
{Tij}N+K

j=1 such that coverage is optimized and reliable com-
munication with the APs is guaranteed, as per the solution of
problem (6).

III. DISTRIBUTED OPTIMAL COMMUNICATION

A centralized solution of (6) as in [14] can incur large
communication cost and delays due to the need of identifying
the network topology and communicating it to the robots.
Therefore, a distributed solution is preferred, where (6) is
solved locally across the group of nodes. For this purpose,
assuming a fixed network topology denoted by x we define
the Lagrangian of (6) as2

Lx(λ,T) =

N∑
i=1

N+K∑
j=1

Vij(Tij) (7)

+

N∑
i=1

λi

[N+K∑
j=1

TijR(xi,xj)−
N∑
j=1

TjiR(xj ,xi)−ri(x)

]
,

where λ ∈ RN is a column vector of the Lagrange multipliers
and T ∈ RN×N+K is a matrix of routing probabilities. Note
that the Lagrangian defined in (7) can be expressed as a sum
of local Lagrangians Lx,i through reordering its terms, which
depend only on variables {Tij}Nj=1, as in [12], i.e.,

Lx(λ,T) =
∑N

i=1
Lx,i(λ,T).

Since the optimization problem (6) is concave for fixed
robot positions, we can equivalently work with the dual
problem. Following the steps of [12], introduce an index k and
the time instants tk at which the communication variables are
updated, and define the following distributed gradient descent
algorithm in the dual domain:

Primal Iteration For a given spatial configuration x(tk) and
Lagrange multiplies λ(tk), compute Lagrangian maximizers
{Tx(tk),ij}

N+K
j=1 as:

{Tx,ij(tk)}N+K
j=1 = argmax∑N+K

j=1 Tij≤1
Lx(tk),i(λ(tk),T). (8)

Dual Iteration Given the primal variables {Tx,ij(tk)}N+K
j=1

from (8), update the dual variables as:

λi(tk+1) = P
[
λi(tk)− ε

(N+K∑
j=1

Tij(tk)R(xi(tk),xj(tk))

−
N∑
j=1

Tji(tk)R(xj(tk),xi(tk))− ri(x(tk))

)]
. (9)

where P denotes the projection to the non-negative orthant.
Note, that the algorithm (8)-(9) is distributed, since it requires
only the Lagrange multipliers λj (equation (8)) and the routing
variables Tji (equation (9)) from robots for which Rij 6= 0.
In the next section, we integrate communication control with
robot mobility for area coverage maximization.

2Since we assume a fixed network topology x, the term H(x) in the
objective function of (6) is a constant; therefore, for the sake of simplicity,
in the construction of the Lagrangian, it can be ignored.

IV. COVERAGE AND ROUTING CONTROL

To jointly optimize coverage and communication we pro-
pose a hybrid scheme that decouples the two control objectives
and alternates between optimization of the two. Specifically,
at each time instant tk, the routing variables are updated
via the distributed algorithm (8)-(9) and during the time
intervals (tk, tk+1) the robots move towards configurations
xi(tk+1) that optimize coverage. Since, the update (8)-(9)
ensures feasibility of the primal variables for a static network
as k →∞, for any arbitrary finite k and for a mobile network,
the primal variables {Tij}N+K

j=1 are not necessarily feasible.
This means that the communication constraint ci may become
negative as the i-th robot moves from xi(tk) to xi(tk+1). To
ensure that this error does not grow large and, therefore, that
an acceptable quality of communication is maintained, every
robot needs to check feasibility of its local routing variables
after every communication update. Robots for which these
routing variables are infeasible remain stationary until the
iteration (8)-(9) returns feasible routes. When feasible routes
are obtained, those robots compute their next position xi(tk+1)
and start moving towards it.

Motion planning is via the solution of local sequential
concave programs that allow to handle the nonlinear coupling
of the robots positions in the optimization problem (6). In
particular, assuming that all other robots are fixed at positions
xj(tk) for j 6= i, every robot i solves the following problem:

maximize
xi

H̃(xi, {xj(tk)}j 6=i) (10)

subject to c̃i(xi, {xj(tk)}j 6=i,T) ≥ 0,

‖xi − xi(tk)‖ ≤ σ,

for the next position xi(tk+1), where {xj(tk)}j 6=i is the
collection of positions at time tk for nodes j 6= i. In (10),
H̃ and c̃i are a concave and linear approximation of H and
ci, respectively. Specifically,

H̃(xi, {xj(tk)}j 6=i) =

H(x(tk)) + (∇xi(tk)H(x(tk)))T (xi − xi(tk))

+ (xi − xi(tk))THk(xi − xi(tk)), (11)

where Hk stands for a negative definite approximation of
the Hessian of H(x(tk)), which can be obtained with known
techniques, such as the BFGS method [20] that only requires
the gradient of H. Also, we have introduced a trust-region
constraint, for some σ > 0, that defines a region where the
aforementioned concave and linear model are adequate ap-
proximations of the coverage objective and the communication
constraint, respectively.

Rewriting (1) in discrete time, we obtain the controller for
the i-th robot as

ui(t) =
xi(tk+1)− xi(tk)

∆t
, ∀t ∈ (tk, tk+1). (12)

Remark 4.1 (Gradients): Observe that the gradients
∇xi(tk)H and ∇xi(tk)ri are required for the linearization of H
and ci, respectively. According to Theorem 2.2 in [2], we have



(a) Time k = 0 (b) Time k = 700 (c) Time k = 2145

Fig. 1. Area coverage optimization for a network consisting of N = 13 robots (black dots) and K = 1 AP (blue rhombus). Figs. 1(a) through 1(c) show the
evolution of the system at different time instants. Green lines represent the communication links among the nodes. Their thickness corresponds to the rates
TijR(xi,xj), so that thicker lines capture higher rates. A presence of a source in the upper right corner is captured by a higher density depicted in yellow.

that ∇xi(tk)H(x) = 2
∫
Vi(q − xi(tk))e−‖q−xi(tk)‖2φ(q)dq,

where the distributed evaluation of the i-th Voronoi cell
can be achieved via the algorithm presented in [1]. As for
the gradient ∇xi(tk)ri(x), it can be computed according to
Proposition 3.1 in [14].

Remark 4.2 (Hessian): Computation of the Hessian in (11)
requires only local information as the term H(x(tk)) does not
include the variable xi(tk+1) and, therefore, it does not affect
the optimization in (10).

V. NUMERICAL SIMULATIONS

In this section we provide a simulation study of a coverage
task involving a mobile robot network consisting of N = 13
robots and K = 1 AP. The area of interest is a square with
side equal to 2 units of length and the density function φ is
assumed to be a Gaussian centered at the top right corner of
the square. The channel reliability is modeled by the following
function

R(xi,xj) =


1 if ‖xij‖ < l∑3

p=0 ap ‖xij‖p if l < ‖xij‖ ≤ u
0 if ‖xij‖ > u

,

where ‖xij‖ = ‖xi − xj‖ and the constants ap, p = 0, . . . , 3
are chosen so that R(xi,xj) is a differentiable function [12].

Fig. 1 depicts the network at different instances of its
evolution along with the quality of the communication links. In
this simulation study, the limits l, u are selected to be equal to
0.3 and 0.65 units, respectively. As the diameter of the region
of interest is approximately 4 times the value of u, multi-
hop communication is necessary in order to cover the whole
area as shown in Fig. 1. In Fig. 2, the quantity rout − rin is
plotted with respect to time showing that the robots are able to
maintain integrity of the communication network, as defined
by equation (5).

0 500 1000 1500 2000
-0.1

0

0.1

0.2

0.3

0.4

0.5

Iterations

r o
u
t

−
r i

n

Fig. 2. Graphical depiction of the difference rout − rin for all robots of
the network.

VI. CONCLUSIONS

In this paper, we presented a distributed control scheme for
maximizing the area coverage by a mobile sensor network
and at the same time ensuring that packets of information are
reliably relayed to a set of APs. The information generated
by the sensors depended on both their sensing capabilities
and the frequency at which events occur in their vicinity.
Then this information was routed to the APs through a multi-
hop network whose communication links modeled channel
reliabilities. A hybrid scheme was proposed that decouples
the optimization of the coverage objective from the control of
the communication variables. Particularly, the update of the
communication variables was performed periodically in the
dual domain and was followed by robot mobility due to a
distributed sequential concave program designed to optimize
the coverage objective. Simulation studies verified the efficacy
of the proposed method.
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