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Abstract—We consider the scenario of a multi-cluster network,
in which each cluster contains multiple single-antenna source
destination pairs that communicate simultaneously over the same
channel. The communications are supported by cooperating
amplify-and-forward relays, which perform beamforming. While
the communications take place within the cluster, there is inter-
cluster as well as intra-cluster interference. The beamforming
weights are obtained so that the total relay transmit power
is minimized, while a certain signal-to-interference-plus-noise-
ratio (SINR) at the destinations is met. First, we show that a
computationally efficient approximate solution is attainable by re-
laxing the original NP-hard non-convex problem to a semidefinite
optimization form. Then, we propose a decentralized method to
solve the convex problem, based on the recently developed Accel-
erated Distributed Augmented Lagrangians (ADAL) algorithm, a
distributed optimization technique that achieves fast convergence
rates. Our decentralized solution allows for each cluster to
compute its own beamforming weights, while coordinating with
other clusters via appropriate message exchanges. Two different
approaches are presented, differing in the message exchange
patterns between clusters. The performance of the decentralized
scheme is demonstrated via simulations.

Index Terms—Cooperative beamforming, multi-cluster sys-
tems, multi-source multi-destination systems, multiuser peer-to-
peer relay networks, distributed optimization, augmented La-
grangian.

I. INTRODUCTION

Cooperative (or relaying) approaches for wireless com-
munications have the potential for significant performance
improvement, such as extended coverage of the network,
throughput enhancement and energy savings [1]–[21]. In co-
operative beamforming, a set of relays form a “virtual antenna
array” and retransmit weighted versions of the source signals
(decode-and-forward (DF) relaying), or weighted versions of
the received signals (amplify-and-forward (AF) relaying). By
exploiting constructive interference effects, the relays focus
the transmitted power on the destinations’ locations, thus
increasing the directional channel gain. By achieving spa-
tial multiplexing, cooperative beamforming can support the
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communications of multiple, distinct, single-antenna, source-
destination pairs that overlap both in time and frequency. This
scenario is also referred to as multiuser peer-to-peer relay
networks [5]–[16].

In general, the per-node throughput capacity of a wireless
ad-hoc network reduces rapidly as the network size increases
[22]. Therefore, it is often preferable to divide the network
nodes into multiple clusters, with each cluster containing nodes
which have distinct sub-goals, or are geographically close to
each other, e.g., applications involving networks of mobile
wireless robots [23, 24].

In this paper we consider a multi-cluster network, in which
multiuser peer-to-peer relay communications take place inside
each cluster, while the intra-cluster communications cause
inter-cluster interference. In this context, the relay weights are
computed based on channel second-order statistics, so that the
total relay transmit power is minimized, while meeting cer-
tain signal-to-interference-plus-noise-ratio (SINR) constraints
at the destinations. First, we show that a computationally
efficient approximate solution is attainable by relaxing the
original NP-hard non-convex problem employing semidefinite
relaxation (SDR) techniques [25]–[28]. Second, we propose
a distributed approach to solve the relaxed problem, which
allows for each cluster to compute its optimal beamforming
weights based on information exchanges with neighboring
clusters only. Such a distributed approach obviates the need
for a a central processing unit that has access to the chan-
nel statistics of all clusters and obtains the relay weights;
centralized approaches do not scale well with the number of
network nodes, resulting in high complexity and long delays.
Our proposed distributed approach is based on Accelerated
Distributed Augmented Lagrangians (ADAL) [29]. ADAL is
a distributed optimization method that relies on augmented
Lagrangians (AL), a regularization technique that is obtained
by adding a quadratic penalty term to the ordinary Lagrangian
of a problem [30]. Compared to standard distributed optimiza-
tion techniques, such as dual decomposition [31], AL methods
converge very fast and do not require strict convexity of the
objective function [30, 31]. The latter is a necessary feature
for our multi-cluster relay beamforming problem, since the
objective function under consideration is affine. At the same
time, it was shown in [29] that, for a number of different
applications, ADAL exhibits a significant improvement in
convergence speed compared to existing AL techniques, such
as the ADMM [32] and the DQA [33].

We propose two different ways to apply ADAL to the multi-
cluster beamforming problem, termed Direct and Indirect,
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that allow us to model different message exchange patterns
(necessary for the iterative execution of ADAL) between
the individual clusters. Specifically, the message exchange
pattern in the Direct method is determined by the coupling
SINR constraints due to inter-cluster interference. On the
other hand, the message exchanges in the Indirect method can
be defined arbitrarily by the user. Both approaches rely on
transforming the SINR coupling constraints to a linear form
by introducing appropriate auxiliary variables. We show, via
numerical experiments, that the Direct method is generally
more efficient than the Indirect. However, the flexibility of
the Indirect method in selecting the message exchange pattern
between clusters might make it more appropriate for certain
applications.

To the best of our knowledge, there is no prior work showing
that the multi-cluster relay beamforming problem is amenable
to a decentralized solution. The closest scenarios considered
in the literature are those of multi-cell downlink beamfroming
[34, 35], which do not involve relays and thus the formulation
is considerably simpler; the two AF communication stages
of the relay problem that we consider in this paper give rise
to several additional interference terms that have to be taken
into account. The beamforming weight design in [34] and [35]
employs respectively the dual decomposition method and the
ADMM. Although one could use similar methods as in [34,
35] to solve our problem, the ADAL method converges faster
according to the simulation results presented in Section IV.

The rest of the paper is organized as follows: In Section II,
we first discuss the single cluster relay beamforming scenario.
Then, we formulate the multi-cluster problem and propose
to pose it as a convex optimization problem using SDR.
In Section III, we present two different ways to obtain a
decentralized solution to the convex multi-cluster problem by
applying ADAL. Finally, in Section IV, we present simulation
results to verify the validity of our approach.

II. RELAY BEAMFORMING

To facilitate understanding of the multi-cluster scenario, we
first formulate the cooperative beamforming problem for a
single cluster. The solution for this problem can be found in
[14]. Then, in Section II-B we formulate and solve the multi-
cluster problem.

A. Single Cluster case

In the single cluster scenario, the goal is to allow commu-
nication of multiple single-antenna source-destination pairs,
which transmit simultaneously using the same channel. The
transmission takes place in two stages, i.e., two consecutive
time-slots. In the first stage, all sources transmit, while in the
second stage the relays retransmit the signals that they received
in an AF fashion. A simple case with two source-destination
pairs and three relays is depicted in Fig. 1.

Consider a network composed of an index set M =
{1, . . . ,M} of sources Sm,∀m ∈ M, users (destinations)
Um,∀m ∈ M and a corresponding set L = {1, . . . , L} of
dedicated, single-antenna relay nodes Rl,∀l ∈ L. Source Sm
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Fig. 1. Simultaneous communication between 2 sources and 2 destinations
with the help of 3 relays. The signal transmitted from source 1 (S1) is intended
for destination 1 (D1), while the signal transmitted from source 2 (S2) is
intended for destination 2 (D2). Signals from S1 and S2 that reach D2 and
D1, respectively, are considered interference. Also shown are the channel gains
fij between sources and relays, and gij between relays and destinations.

wishes to communicate with user Um. During the first commu-
nication stage, every source Sm transmits the signal

√
P0sm,

where P0 is the common power, and sm ∈ C, m = 1, . . . ,M
denote the information symbols, which are independent iden-
tically distributed (i.i.d.) with unit power. The received signal
at every relay Rl is given by

xl =
√
P0

M∑
m=1

fmlsm + vl,

where C denotes the set of complex numbers, fml ∈ C is
the channel between source Sm and relay Rl, and vl ∈ C
is the noise at relay Rl, assumed to have zero mean and
unit variance. The channel coefficients are treated as random,
i.i.d., independent between different paths. This assumption
is valid when the nodes are sufficiently separated. It is also
assumed that the channel coefficients are independent of the
source signals and the noise. Correspondingly, the received
signal vector at all relays can be expressed in matrix form as

x =
√
P0Fs + v,

where s = [s1, . . . , sM ]T ∈ RM , x = [x1, . . . , xL]T ∈ CL,
v = [v1, . . . , vL]T ∈ CL, with (·)T denoting the transposition
operation, and

F =

 f11 . . . fM1

...
. . .

...
f1L . . . fML

 =
[
f1 . . . fM

]
∈ CL×M

is a channel state matrix, with fm = [fm1, . . . , fmL]T ∈ CL
denoting the channel gain column vector from source Sm to
all relays.

During the second communication stage, the relays re-
transmit, in an AF fashion, a linear transformation of their
received signals. We can express this linear transformation as
a multiplication of x with a beamforming matrix W ∈ CL×L.
Hence, the vector t ∈ CL of relay transmissions can be written
as

t = Wx =
√
P0WFs + Wv,
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Since the relays are physically separated, they do not have ac-
cess to the signals received at other relays. Each relay operates
only on its own received signal, and thus the beamforming
matrix is diagonal, i.e. W = diag{w1, . . . , wL} , where wl
denotes the complex weight with which relay Rl multiplies
its received signal.

By similar reasoning as above, the received signal vector
y ∈ CM at the destinations equals

y = Gt + z =
√
P0GWFs + GWv + z,

where z = [z1, . . . , zM ]T ∈ CM denotes the vector stacking
i.i.d random noise components with zero mean and unit
variance, and

G =

 g11 . . . gL1
...

. . .
...

g1M . . . gLM

 =
[
g1 . . . gM

]T ∈ CM×L,

is a channel state matrix, with gm = [g1m, . . . , gLm]T ∈ CL
denoting the channel gain column vector from all relays to
user Um, m ∈ M. The received signal at user Um can be
divided in three components that capture: i) the desired signal
originating from source Sm, ii) interference due to sources
other than Sm that constitute interference, and iii) noise at the
user, i.e.,

ym = gTmt + zm (1)

= gTmWfmsm︸ ︷︷ ︸
Desired

+

j 6=m∑
j∈M

gTmWf jsj + gTmWv︸ ︷︷ ︸
Interference

+ zm︸︷︷︸
Noise

,

A reasonable optimality criterion for determining the beam-
forming weights is the minimization of the total relay transmit
power, PT , subject to satisfying certain Quality of Service
requirements at all destinations, namely enforcing user-specific
SINR bounds γm > 0. Since the channels are in general
random, we will use the average transmit power. Therefore,
we can pose the cooperative beamforming problem as the
following optimization problem:

minW PT (W)
s.t. SINRm(W) ≥ γm, ∀m = 1, . . . ,M.

(2)

The total average transmit power at the relays equals

PT (W) = E{‖t‖2F }

= E
{

Tr
[(√

P0WFs + Wv
)(√

P0WFs + Wv
)H]}

= Tr
(
P0WE{FFH}WH

)
+ Tr

(
WWH

)
,

where ‖ · ‖F denotes the Frobenius norm. The expectation in
the first equation is taken over source signals and channels,
while in the second and third equations, due to the i.i.d. and
unit power assumption on the sm’s, the signal terms have been
already averaged out and the expectation refers to the channels.
Due to our assumptions, E{FFH} is a diagonal matrix. Since

W is also a diagonal matrix, we can use this property to
express the sum transmit power as

PT = wHRTw,

where w =
[
w1, . . . , wL

]T ∈ CL is a column vector
containing all the diagonal elements of W, and

RT = P0diag
{ ∑
m∈M

E{|fm1|2}, . . . ,
∑
m∈M

E{|fmL|2}
}

+ IL,

where | · | denotes the magnitude of a complex number. Based
on (1), the SINR at every user Um is defined as

SINRm ,
E
( Desired︷ ︸︸ ︷
P0|gTmWfmsm|2

)
E
(
P0

j 6=m∑
j∈M

|gTmWf jsj |2︸ ︷︷ ︸
Interference

+ ||gTmWv||2 + |zm|2︸ ︷︷ ︸
Noise

) ,

where the term P0

∑j 6=m
j∈M |gTmWf jsj |2 represents interference

at user Um caused by signals intended for other users, the term
||gTmWv||2 denotes noise at the relays that was propagated
to the user, and |zm|2 denotes noise at the user level. The
expectation in the above equation refers to everything that is
random, i.e., signals, channels, noise. Observe that the average
SINR is defined as the ratio of the expected values, which is
different than the expected value of the ratio. This definition is
frequently used in communications textbooks, e.g. [36], and
in published works related to the problem considered here
[4, 6, 7, 14, 20].

Similar as before, we can manipulate the SINR expression
to write it in a more compact matrix form

SINRm =

Desired︷ ︸︸ ︷
P0w

HRm
S w

P0w
HRm

I w︸ ︷︷ ︸
Interference

+ wHRm
v w + 1︸ ︷︷ ︸

Noise

.

The desired signal matrix for user Um is Hermitian

Rm
S = E{(fTm � gTm)H(fTm � gTm)},

with � denoting the Hadamard (entry-wise) product. The
corresponding interference matrix is also Hermitian

Rm
I =

j 6=m∑
j∈M

E{(fTj � gTm)H(fTj � gTm)},

and the respective noise matrix is diagonal

Rm
v = diag

{
E{|g1m|2}, . . . ,E{|gLm|2}

}
.

Utilizing the above notation, the single-cluster optimization
problem (2) can be compactly written as
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min
w

wHRTw (3)

s.t. wHQmw ≥ 1, ∀m = 1, . . . ,M,

where Qm = P0

γm
Rm
S − P0R

m
I −Rm

v .

B. Multiple Clusters case
In this section we consider a multi-cluster network, in

which, neighboring clusters’ communications interfere. A sim-
ple setup with two clusters is depicted in Fig. 2. In this case,
the beamforming decisions of the relays of each cluster must
also take into account the interference caused to and from
the other clusters’ operation. This introduces three new terms
in the SINR of each user. First, there is a term quantifying
the interference on the relays of each cluster, exerted by
the transmissions of other clusters’ sources during the first
communication stage, which then propagates to the users of
this cluster after the second stage transmission. Second, there
is also interference on the users of each cluster exerted by the
signals transmitted from the relays of other clusters that are
intended for other users. Finally, the noise at the relays of all
clusters propagates to the users of each cluster after the second
stage transmissions.

Define a setN = {1, . . . , N} of clusters, where each cluster
Cn,∀n ∈ N is now composed of a set Mn = {1, . . . ,M}
of single antenna source-destination pairs, and a set Ln =
{1, . . . , L} of dedicated relays. We denote the m-th user
(destination) of the n-th cluster as Unm, ∀n ∈ N ,m ∈ Mn,
the respective source as Snm, and the relays as Rnl, ∀n ∈
N , l ∈ Ln. Note that we assume for simplicity of notation,
and without loss of generality, that all clusters contain the
same number of source destination pairs M and relays L.

In the multi-cluster scenario, the received signal at every
relay Rnl is a superposition of signals originating from the
sources of all clusters

xnl =
√
P0

∑
j∈N

∑
m∈Mj

fjm,nlsjm + vnl,

where, again, P0 is the common transmit power of all sources
and snm ∈ C denotes the, normalized to unit power, informa-
tion symbol transmitted by source Snm. Also, vnl ∼ CN (0, 1)
is the noise at relay Rnl and fjm,nl denotes the channel gain
between source Sjm and relay Rnl. Re-writing in matrix form,
the received signal vector at all relays of cluster Cn is

xn =
∑

j∈N

√
P0Fjnsj + vn,

where sj = [sj1, . . . , sjM ]T ∈ CM , xn = [xn1, . . . , xnL]T ∈
CL, vn = [vn1, . . . , vnL]T ∈ CL. The matrix Fjn ∈ CL×M
is defined as the channel state matrix containing the channels
from all sources of cluster Cj to all the relays of cluster Cn,
i.e.,

Fjn =

 fj1,n1 . . . fjM,n1

...
. . .

...
fj1,nL . . . fjM,nL

 =
[
fj1,n . . . fjM,n

]
,

where fjm,n = [fjm,n1, . . . , fjm,nL]T ∈ CL denotes the
channel gain vector from source Sjm to all relays of cluster
Cn.

S11
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U11

f12,13
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f11,11

g11,11

g13,12

R11

U21

U22

S22

R22

R21

R23

S21

f22,23

f21,23
g22,12

g12,11

g13,21

g13,22 g22,21

g23,22

g21,12

C1

C2

Fig. 2. A N = 2 multi-cluster relay beamforming scenario, with M =
2 source-destination pairs (green and blue dots respectively) and L = 3
dedicated relays (red dots) for each cluster. Note that only a portion of all the
available channels is drawn in order to avoid congestion.

Similar to the single cluster scenario, during the second
communication stage the relays of cluster Cn retransmit, in an
AF fashion, a linear transformation of their respective received
signals xn, i.e.,

tn = Wnxn =
√
P0Wn

(∑
j∈N

Fjnsj
)

+ Wnvn,

where tn ∈ CL denotes the forwarded signal vector and Wn ∈
CL×L is the corresponding beamforming matrix of cluster Cn.
Recall that we consider the case where every relay node carries
a single antenna, which translates into the beamforming matrix
being diagonal, i.e. Wn = diag{wn1, . . . , wnL} ∈ CL×L ,
where wnl denotes the complex weight with which relay Rnl
multiplies its received signal.

The received signal vector yn ∈ CM for all users of each
cluster Cn is now a superposition of signals from the relays
of all clusters, and can be expressed as

yn =
∑
j∈N

Gjntj + zn (4)

=
∑
j∈N

(√
P0GjnWj

(∑
i∈N

Fijsi
)

+ GjnWjvj

)
+ zn,

where zn = [zn1, . . . , znM ]T ∈ CM denotes the vector of i.i.d
random noise components znm ∼ CN (0, 1) at user Unm. The
matrix Gjn ∈ CM×L is defined as the channel state matrix
containing the channels from all relays of Cj to all the users
of Cn, i.e.,

Gjn =

 gj1,n1 . . . gjL,n1
...

. . .
...

gj1,nM . . . gjL,nM

 =
[
gj,n1 . . . gj,nM

]T
,

with gj,nm = [gj1,nm, . . . , gjL,nm]T ∈ CL denoting the
channel gain column vector from all relays of Cj to Unm.
The received signal at user Unm is given by the m-th entry
of the vector yn in (4). The pertinent expression is
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ynm =
∑

j∈N
gTj,nmtj + znm

=
√
P0g

T
n,nmWnfnm,nsnm︸ ︷︷ ︸

Desired

+ gTn,nmWn

(∑i6=m

i∈Mn

√
P0fni,nsni

)
︸ ︷︷ ︸

Intra-Cluster Interference from same cluster’s sources other than Snm

+ gTn,nmWn

(∑j 6=n

j∈N

√
P0Fjnsj

)
︸ ︷︷ ︸

Inter/Intra-Cluster Interference from out-of-cluster sources

+
∑j 6=n

j∈N
gTj,nmWj

(∑
i∈N

√
P0Fijsi

)
︸ ︷︷ ︸

Inter-Cluster Interference

,

+
∑

j∈N
gTj,nmWjvj + znm︸ ︷︷ ︸

Noise

,

where we can now see more clearly how the three aforemen-
tioned, additional interference terms that arise in the multi-
cluster scenario affect the formulation. Specifically, the term
labeled “Inter/Intra-Cluster Interference from out-of-cluster
sources” denotes the interference on the relays of each cluster,
exerted by the transmissions of other clusters’ sources during
the first communication stage. This interference propagates to
the users in the second stage when the relays of the same
cluster transmit, hence the hybrid characterization Inter/Intra-
Cluster Interference. Also, the term labeled “Inter-Cluster
Interference” denotes the interference on the users of each
cluster, exerted by signals transmitted by the relays of other
clusters that are intended for other users. Finally, notice that
the term labeled Noise now also includes the noise at the relays
of all clusters that propagates to the users of each cluster after
the second stage transmissions. We assume that the two stages
of the AF protocol are synchronized for the whole network,
such that interference from source transmissions affecting user
receptions directly is not possible.

Subsequently, the average SINR of user Unm is defined as

SINRnm , E
(
P0|gTn,nmWnfnm,nsnm|2︸ ︷︷ ︸

Desired

)/

E
(
P0

i 6=m∑
i∈Mn

|gTn,nmWnfni,nsni|2︸ ︷︷ ︸
Intra-cluster interference

+
∑
j∈N
|gTj,nmWjvj |2︸ ︷︷ ︸

Noise

+ P0

∑j 6=n

j∈N

∑
k∈Mj

|gTn,nmWnfjk,nsjk|2︸ ︷︷ ︸
Inter/Intra-cluster interference

+ P0

j 6=n∑
j∈N

∑
i∈N

∑
k∈Mi

|gTj,nmWjfik,jsik|2︸ ︷︷ ︸
Inter-cluster interference

+ |znm|2︸ ︷︷ ︸
Noise

)
.

Thus, the multi-cluster beamforming problem entails finding

Wn that solves the optimization problem

min
{Wn,∀n∈N}

∑
n∈N

PnT (Wn) (5)

s.t. SINRnm(Wn) ≥ γnm, ∀n ∈ N , m ∈Mn,

where the average, total transmited power at the relays of
cluster Cn is calculated as

PnT = E{‖tn‖2F }

=
∑
j∈N

Tr
(
P0WnE{FjnFHjn}WH

n

)
+ Tr

(
WnW

H
n

)
.

To facilitate further exposition, and, also, to accomodate for
the manipulations in Section III, in what follows we will
express (5) in a matrix form. To this end, the total transmited
power at the relays of Cn can be written as

PnT = wHnR
n
Twn,

where wn =
[
wn1, . . . , wnL

]T ∈ CL is a column vector
containing all the diagonal elements of Wn, and

Rn
T = IL + P0

∑
j∈N

∑
m∈Mj

diag
{
E{|fjm,n1|2}, . . . ,

, . . . ,E{|fjm,nL|2}
}
,

with IL denoting the identity matrix of size L. Doing the same
for the SINR expression, we define for every n ∈ N ,m ∈Mn

the desired signal matrices as

Rnm
S = E{(fTnm,n � gTn,nm)H(fTnm,n � gTn,nm)},

the intra-cluster interference matrices as

Rnm
I =

∑i 6=m

i∈Mn

E{(fTni,n � gTn,nm)H(fTni,n � gTn,nm)},

and the inter/intra-cluster interference matrices as

Rnm
II =∑j 6=n

j∈N

∑
k∈Mj

E{(fTjk,n � gTn,nm)H(fTjk,n � gTn,nm)}.

Moreover, for every n ∈ N , m ∈ Mn and j ∈ N\{n} we
define the inter-cluster interference matrices as

Rj,nm
IC =

∑
i∈N

∑
k∈Mi

E{(fTik,j � gTj,nm)H(fTik,j � gTj,nm)},

and, finally, the noise matrices as

Rj,nm
v = diag

{
E{|gj1,nm|2}, . . . ,E{|gjL,nm|2}

}
.

Note that all the above matrices are Hermitian. Using the
above notation, the SINRnm is equivalently expressed as

SINRnm =

(
P0w

H
nR

nm
S wn

)/(
P0w

H
nR

nm
I wn

+ P0w
H
nR

nm
II wn + P0

∑j 6=n

j∈N
wHj R

j,nm
IC wHj

+
∑

i∈N
wHi R

i,nm
v wi + 1

)
.
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Then, problem (5) can be written in matrix form as

min
{wn,∀n∈N}

∑
n∈N

wHn R
n
Twn

s.t. wHnQ
nnmwn +

∑j 6=n

j∈N
wHj Q

jnmwj ≥ 1,

∀n ∈ N , m ∈Mn, (6)

where we have further defined the matrices

Qnnm =
P0

γnm
Rnm
S − P0R

nm
I − P0R

nm
II −Rn,nm

v

and Qjnm = −P0R
j,nm
IC −Rj,nm

v ,

to obtain a more compact notation for each SINR constraint.
Note that the term wHj Q

jnmwj essentially gathers all the
terms that depend on the beamforming decisions of cluster
Cj and appear in the SINR constraint of user Unm.

Since the matrices Qjnm, Qnnm will be, in general,
indefinite, it follows that the optimization problem (6) belongs
in the class of nonconvex Quadratically Constrained Quadratic
Programming (QCQP) problems, which are NP-hard to solve.
Nevertheless, by defining the variables Xj , wjw

H
j , ∀ j ∈

N and using the fact that wHj Q
jnmwj = Tr(XjQ

jnm), we
can express (6) in the equivalent form [25]

min
{Xn,∀n∈N}

∑
n∈N

Tr(XnR
n
T ) (7)

s.t. Tr(XnQ
nnm) +

∑j 6=n

j∈N
Tr(XjQ

jnm) ≥ 1,

Xn ∈ SL+, ∀n ∈ N , m ∈Mn,

rank(Xn) = 1, ∀n ∈ N .

where Xj ∈ SL+ imposes the (convex) constraint that matrix
Xj belongs to the cone of symmetric, positive semidefinite
matrices of dimension L. Note that, since Qjnm is Hermi-
tian and Xj is symmetric, it follows that Tr(XjQ

jnm) =
Tr(XjRe(Qjnm)) which means that the inequality constraint
in (7) is well defined, where Re(·) returns the real part of a
complex number.

Problem (7) is equivalent to (6) and still nonconvex because
of the nonconvex rank constraint. Nevertheless, the rest of the
problem is convex, which motivates the relaxation of the rank
constraint in order to obtain a problem that is manageable to
solve. The resulting SDR of problem (7) becomes

min
{Xn,∀n∈N}

∑
n∈N

Tr(XnR
n
T ) (8)

s.t. Tr(XnQ
nnm) +

∑j 6=n

j∈N
Tr(XjQ

jnm) ≥ 1,

Xn ∈ SL+, ∀n ∈ N , m ∈Mn.

Note that, by dropping the rank constraints, we essentially
enlarge the feasible set. Hence, in general, the relaxation (8)
will only yield an approximate solution to (7), with an optimal
value that provides a lower bound for the original problem.
Therefore, the optimizers X∗j , ∀j ∈ N of (8) will not be
rank-one in general, due to the relaxation. If they are, then
they will be the optimal solution to the original problem (7). If

not, randomization techniques [37] can be employed to obtain
a rank one matrix.

Remark 1 Observe that, similar to [4, 14, 15, 20], the above
formulation assumes knowledge of the second order statistics
of channel state information (CSI). In a practical setting, this
can be obtained based on past observations.

Remark 2 The inequality constraints in (8) must be active at
the optimal solution (satisfied as equalities), because if they
were not, we would be able to decrease the magnitudes of Xn

further, thus invalidating the optimality assumption.

III. DISTRIBUTED RELAY BEAMFORMING

Since the beamforming decisions in (8) are coupled in the
constraint set, a central processing unit would have to be
employed to gather the data involving the second order statis-
tics of all channels, compute the optimal solution and then
transmit the optimal beamforming weights, expressed in the
form of the beamforming matrices Xn, to the corresponding
relays. However, this centralized approach would introduce
congestion, delays, and would suffer from poor scalability, as
the cluster population grows.

In this section we describe a distributed algorithm to solve
(8). Our method is distributed in the sense that it allows
for each cluster to compute its own optimal beamforming
matrix, by performing individual computations based only on
locally available information. We utilize the distributed algo-
rithm ADAL [29], which we have recently developed for the
solution of convex optimization problems with linear coupling
constraints. ADAL is based on the AL framework [30] and
eliminates the requirement for strict convexity, which is a
necessary condition in simple dual decomposition methods. At
the same time, it was shown in [29] that, for a number of dif-
ferent applications, ADAL exhibits a significant improvement
in convergence rates compared to existing AL techniques, such
as the Alternating Directions Method of Multipliers (ADMM)
[32] and the Diagonal Quadratic Approximation (DQA) [33].

We present two different ways to implement ADAL on our
particular multi-cluster beamforming problem, depending on
how we express the coupling constraint set of (8). In the rest of
this section, we describe these two possible implementations
of ADAL, termed Direct and Indirect for reasons to become
transparent later, and discuss their practical applications.

A. Direct method

ADAL is a primal-dual iterative scheme, where each itera-
tion consists of three steps. First, every cluster solves a local
convex optimization problem, cf. (14), which, by assuming
that only neighboring clusters contribute interference, requires
access to the previous primal-dual iterates of neighboring
clusters only. Then, every cluster updates and transmits its
primal variables according to (16). Finally, after receiving
the updated primal variables from neighboring clusters, every
cluster updates the dual variables corresponding to its users’
constraints according to (17).
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To apply ADAL we need to reformulate (8) so that the
coupling constraints are affine. For this, define auxiliary vari-
ables ζnjm,∀n, j ∈ N , m ∈ Mn that express the amount
of “influence”, namely, either the desired signal power or
interference exerted by all the relays of cluster Cn on each
user Ujm of the system. In particular,

ζnnm = Tr(XnQ
nnm)− 1 (9)

= Tr
(
Xn

( P0

γnm
Rnm
S − P0R

nm
I −Rn,nm

v

))
− 1

denotes the desired signal power for every user Unm belonging
in cluster Cn, while

ζnjm = Tr(XnQ
njm) (10)

= Tr
(
Xn

(
− P0R

j,nm
IC −Rj,nm

v

))
denotes the interference exerted by cluster Cn on user Ujm
that belongs to another cluster Cj , that is for every j ∈
N\{n} and m ∈ Mj . Furthermore, define the vector ζn =
[ζn11, . . . , ζnNM ]T ∈ RNM stacking all the “influences” of
Cn. Then, problem (8) can be equivalently written as

min
{Xn,∀n∈N}

∑
n∈N

Tr(XnR
n
T ) (11)

s.t.
∑

n∈N
ζn = 0

ζnnm = Tr(XnQ
nnm)− 1, ∀n ∈ N m ∈Mn

ζnjm = Tr(XnQ
njm),∀n ∈ N , j ∈ N\{n},m ∈Mj

Xn ∈ SL+, ∀n ∈ N ,

where 0 is the zero vector of dimension NM . Note that we
have replaced the inequality SINR constraints of (8) with the
equality constraints

∑
n∈N ζn = 0 in (11). This is acceptable

since the SINR inequality constraints in (8) must be active at
the optimal solution, i.e., satisfied as equalities; recall Rem.
2. The idea behind transforming (8) into (11) is that now the
problem involves local constraints for each cluster, except for
the coupling

∑
n∈N ζn = 0 which is a simple affine constraint

and thus amenable to distributed implementation using the
ADAL.

The augmented Lagrangian associated with (11) is

Λ(X, ζ,λ) =
∑
n∈N

Tr(XnR
n
T ) + λT

∑
n∈N

ζn︸ ︷︷ ︸
Ordinary Lagrangian

+
ρ

2
‖
∑
n∈N

ζn‖22︸ ︷︷ ︸
Penalty term

, (12)

where λ = [λ11, . . . , λNM ]T ∈ RNM is the vector of
Lagrange multipliers (dual variables), X = {X1, . . . ,XN}
and ζ = {ζ1, . . . , ζN} denote the collection of all primal and
auxiliary variables respectively, and ρ ∈ R+ is a properly
defined penalty coefficient. Note that we include only the
constraint

∑
n∈N ζn = 0 in (12), because the rest of the

constraints are local at each cluster Cn. For simplicity of

notation, we collectively denote the set of points satisfying
these local constraints of each cluster Cn as

Zn =
{
ζn ∈ RNM | ζnnm = Tr(XnQ

nnm)− 1, ∀m ∈Mn,

ζnjm = Tr(XnQ
njm), ∀j ∈ N\{n},m ∈Mj

}
.

As already mentioned, the presence of the quadratic penalty
term in (12) destroys the separability property of the ordinary
Lagrangian. ADAL overcomes this limitation by defining local
augmented Lagrangians for every cluster Cn

Λn(Xn, ζn, ζ̃j ,λ) = Tr(XnR
n
T ) + λT ζn

+
ρ

2
‖ζn +

∑j 6=n

j∈N
ζ̃j‖22, (13)

where we introduce variables ζ̃j , denoting the primal vari-
ables that are controlled by Cj but communicated to Cn for
optimization of its local Lagrangian Λn. With respect to Cn,
these are considered fixed parameters. ADAL is an iterative
procedure according to which, at each iteration k, each cluster
Cn begins by finding the minimizers ζ̂

k

n of its local augmented
Lagrangian, as

ζ̂
k

n = argmin
Xn∈SL+,ζn∈Zn

Λn(Xn, ζn, ζ̃
k

j ,λ
k). (14)

A key observation here is that each cluster Cn does not
actually need global information to calculate (14), as it might
appear at first sight by looking at the penalty term of each
local AL. Although computing the penalty terms appears to
require access to all ζ̃j , ∀j ∈ N\{n}, one can readily observe
that

‖ζn +

j 6=n∑
j∈N

ζ̃j‖22 =
∑
i∈N

∑
m∈Mi

(
ζnim +

j 6=,n∑
j∈N

ζ̃jim

)2
(15)

where we recall that ζjim denotes the “influence” that Cj
exerts on user Uim. In practical applications, each Cn will
exert non-negligible interference (above a specified threshold)
on a subset Bn ⊆ {U11, . . . , UNM} of the set of active users
and, consequently, we can set to 0 all ζnim, ∀ Uim /∈ Bn. Cor-
respondingly, the summation terms in (15) for users Uim /∈ Bn
that do not experience interference from the operation of Cn
are just constant terms in the optimization step (14) and can
be neglected. In other words, each Cn only needs information
from those clusters that exert non-negligible “influence” on
the users belonging in Bn. Therefore, we can formally define
the message-exchange neighborhood of cluster Cn as the set
of clusters Cn = {Cj : j ∈ N , Bj

⋂
Bn 6= ∅}.

After calculating ζ̂
k

n according to (14), each cluster
Cn, ∀n ∈ N updates its estimates ζ̃n that will be communi-
cated to its neighbors Cj ∈ Cn according to

ζ̃
k+1

n = ζ̃
k

n + τ(ζ̂
k

n − ζ̃
k

n), (16)

where τ is a stepsize, the determination of which is critical
to the convergence properties of the method. Finally, the dual
update is performed according to

λk+1 = λk + τρ
∑

n∈N
ζ̃
k+1

n . (17)
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Algorithm 1 Direct Method
Set k = 0 and determine estimates for the sets Cn and
Inm, ∀n ∈ N , m ∈ Mn. Every cluster Cn initializes and
transmits its primal ζ̃

0

n and dual λ0
n variables.

1. Every cluster Cn minimizes its local AL according to
(14), after receiving the primal ζ̃

k

i and dual λkj variables
from clusters Cj ∈ Cn.

2. Every cluster Cn updates and transmits its primal vari-
ables ζ̃

k+1

i according to (16).
3. Every cluster Cn updates and transmits the dual vari-

ables of its users λk+1
mm , ∀m ∈ Mn, according to (17),

after receiving the updated primal variables from clusters
Cj ∈ Inm, ∀m ∈Mn. Return to Step 1.

The dual updates are distributed by structure. The Lagrange
multiplier λnm, corresponding to the SINR constraint of
user Unm, must be updated, at iteration k, according to
λk+1
nm = λknm + τρ

∑
j∈N ζ

k+1
jnm. This summation needs to

include “influences” only from those clusters that exert non-
negligible “influence” on Unm, i.e., the set Inm = {Cj :
Unm ∈ Bj ,∀j ∈ N}.

We conclude this section with a remark on the stepsize
parameter τ . According to the convergence analysis in [29],
the primal stepsize τ in (16) must be determined as τ <

2
max{nm} |Inm| , where | · | denotes the cardinality of a set.
Essentially, τ is affected by the number of clusters coupled
in the “most populated” constraint in the system, i.e., the
constraint corresponding to the user that suffers interference
from the largest number of clusters. However here, the sets
Inm are not known a priori since they are determined by
the optimal beamforming decisions. In this case, we need to
determine conservative estimates for all the sets Inm, e.g.,
by letting each cluster’s relays send maximum power pilot
signals before the execution of the distributed algorithm. An
analogous line of reasoning can be used to determine the
communication neighborhood Cn of each cluster Cn, which in
turn depends on appropriately defining the sets Bn. Last, we
note that, based on the analysis in [29], the penalty coefficient
ρ must remain constant throughout the iterative execution. The
Direct method is summarized in Alg. 1.

B. Indirect Method

The indirect method is also a 3-step primal-dual iterative
scheme. Every cluster solves a local convex optimization
problem, cf. (22), and, in the next two steps, it updates and
transmits its primal, cf. (23), and dual variables, cf. (24),
respectively. The main difference with the direct method lies
in the way that we formulate the coupling constraints, cf. (18),
which, in turn, leads to a different message exchange scheme.
In particular, the indirect method allows us to manually
define the message exchange network, cf. (19), without any
dependencies on the inter-cluster interference patterns (see the
pertinent discussion for the direct method in the end of Section
III-A).

As with the direct method, the proposed indirect method
also relies on defining appropriate auxiliary variables to

introduce affine coupling constraints between the clusters.
Consider, again, auxiliary variables ζnjm exactly as described
in (9) and (10) and ζn = [ζn11, . . . , ζnNM ]T ∈ RNM and
now also define ζ = [ζT1 , . . . , ζ

T
N ]T ∈ RN2M as the vector

stacking all “influences” in the system. Furthermore, define
local variables ∀n, j ∈ N

ζ(n) = [(ζ
(n)
1 )T , . . . , (ζ

(n)
N )T ]T ∈ RN

2L,

where ζ(n)j = [ζ
(n)
j11, . . . , ζ

(n)
jNK ]T ∈ RNL, so that each ζ(n)

acts as an individual estimate of the global vector ζ for
every Cn and ζ(n)j expresses the estimate that Cn has for
the “influences” exerted by Cj on the system. The key idea
behind this approach is to allow each decision maker Cn to
maintain and update its own estimate of the global state of
the system. Correspondingly, we need to enforce “consensus”
among all these local variables, by imposing coupling, affine
constraints of the form

ζ(1) = ζ(2) = · · · = ζ(N). (18)

There are many ways to express these equality constraints,
depending on the message exchange capabilities between
different clusters. In fact, let G = (V,E) denote a directed
graph defined on the set of clusters so that V = N is the
set of vertices and E ⊆ V × V is the set of edges so that
E = {(i, j) : j ∈ Di, i, j ∈ N}. Here, Di denotes the set of
the 1-hop out-neighbors of node i in the graph G. Then, we
can express (18) equivalently as

ζ(1) = ζ(j), ∀j ∈ D1 (19)
...

ζ(N) = ζ(j), ∀j ∈ DN

if and only if the graph G = (V,E) is weakly connected, i.e.,
if there exists an undirected path between any two nodes in
the graph.

Using the coupling constraints (19), problem (8) can be
transformed into

min
{Xn,∀n∈N}

∑
n∈N

Tr(XnR
n
T ) (20)

s.t. ζ(n) = ζ(i), ∀n ∈ N , i ∈ Dn∑
j∈N

ζ
(n)
jnm ≥ 0, ∀ j, n ∈ N , m ∈Mn

ζ(n)nnm = Tr(XnQ
nnm)− 1, ∀ n ∈ N ,m ∈Mn

ζ
(n)
njm = Tr(XnQ

njm), ∀ n ∈ N , j ∈ N\{n}, m ∈Mj

Xn ∈ SL+, ∀ n ∈ N .

Again, all the constraints in (20) are local to each Cn and
the only coupling constraints are the consistency constraints
ζ(n) = ζ(i), ∀n ∈ N , i ∈ Dn, which are affine and thus
amenable to decomposition by the ADAL algorithm.
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Similar to the analysis in Section III-A, the augmented
Lagrangian associated with (20) is

Λ({Xn, ζ
(n)}Nn=1,λ) =∑

n∈N
Tr(XnR

n
T ) +

∑
n∈N

∑
l∈Dn

(λ(nl))T (ζ(n) − ζ(l))︸ ︷︷ ︸
Ordinary Lagrangian

+
∑
n∈N

∑
l∈Dn

ρ

2
‖ζ(n) − ζ(l)‖22︸ ︷︷ ︸

Penalty term

,

where λ(nl) ∈ RN2M is the vector of Lagrange multipliers
corresponding to the constraint ζ(n) = ζ(l), defined for every
n ∈ N , l ∈ Dn. As in Section III-A, we define local
augmented Lagrangians ∀n ∈ N

Λn(Xn, ζ
(n), ζ̃

(j)
,λ(nl)) = Tr(XnR

n
T ) (21)

+
∑
l∈Dn

(λ(nl))T ζ(n) +
∑

{m:n∈Dm}

(λ(mn))T (−ζ(n))

+
∑
l∈Dn

ρ

2
‖ζ(n) − ζ̃

(l)
‖22 +

∑
{m:n∈Dm}

ρ

2
‖ζ̃

(m)
− ζ(n)‖22,

where, again, the terms ζ̃
(l)

represent the local variables of
each neighbor Cl, l ∈ Dn of Cn, that are communicated to
Cn and considered constant with respect to the minimiza-
tion of (21) at each respective iteration. Note that the term∑
l∈Dn

(λ(nl))T ζ(n)+
∑
{m:n∈Dm}(λ

(mn))T (−ζ(n)) emerges
from the consideration of the set of constraints (19).

Then, with every iteration k of the algorithm, every cluster
Cn finds the minimizers ζ̂

(n),k
of the local problem as

ζ̂
(n),k

= argmin{Xn,ζn} Λn(Xn, ζ
(n), ζ̃

(j),k
,λk)

s.t Xn ∈ SL+, ζ
(n) ∈ Zn, (22)

where, again, we define

Zn =
{
ζ(n) ∈ RN

2M |ζ(n)nnm = Tr(XnQ
nnm)− 1,∀m ∈Mn,

ζ
(n)
njm = Tr(XnQ

njm), ∀j ∈ N\{n}, m ∈Mj

}
,

as the set of all points that satisfy the local constraints at each
cluster. Subsequently, each cluster Cn updates its estimates
ζ̃
(n),k

according to

ζ̃
(n),k+1

= ζ̃
(n),k

+ τ(ζ̂
(n),k

− ζ̃
(n),k

), (23)

and transmits the results to its in- and out-neighbors in the
graph G. Finally, each cluster Cn updates its dual variables
λ(nl),k+1, ∀l ∈ Dn according to

λ(nl),k+1 = λ(nl),k + τρ(ζ̃
(n),k+1

− ζ̃
(l),k+1

). (24)

and transmits the updated values to its in- and out-neighbors
in the graph G.

The intuition behind the indirect method is that each Cn
tries to control its own variables, i.e., the entries ζ(n)njm, ∀j ∈
N , m ∈ Mj , based on its current impression of the state of

Algorithm 2 Indirect Method
Set k = 0 and define the consensus graph G, cf. (19). Every
cluster Cn initializes and transmits its primal ζ̃

(n),0
and dual

λ(nl),0 variables.
1. Every cluster Cn minimizes its local AL according to

(22), after receiving the primal ζ̃
(l),k

and dual λ(l),k

variables from its in- and out-neighbors in the graph G.
2. Every cluster Cn updates and transmits its primal vari-

ables ζ̃
(n),k+1

according to (23).
3. Every cluster Cn updates and transmits its dual variables
λ(nl),k+1, ∀l ∈ Dn, according to (24), after receiving
the updated primal variables ζ̃

(l),k+1
from its out-

neighbors l ∈ Dn. Return to Step 1.

the system as expressed by the rest of the entries in ζ(n). As
the iterations progress, the updated decisions of each cluster
diffuse into the system and all clusters are forced to reach a
consensus [38], in parallel with the optimization of the local
utilities.

Note that each ζ̃
(n)

does not necessarilly need to include
global information of the system. Instead, if we are able to
estimate which users each cluster Cn will exert a negligible
interference on, then we can neglect the corresponding entries
of ζ̃

(n)
(and subsequently of λ(nl)), thus reducing the size of

the problem significantly. Moreover, note that according to the
convergence analysis of ADAL in [29], the choice of stepsize
for the indirect method should be τ ≤ 1/2, because, for all
possible communication graphs G, the coupling constraints
will always involve only two decision makers (clusters). This
is a direct consequence of the consensus constraints (19). The
Indirect method is summarized in Alg. 2.

IV. NUMERICAL ANALYSIS

In this section, we illustrate the effectiveness of the proposed
direct and indirect implementations of the ADAL algorithm for
cooperative relay beamforming problems. We conducted sim-
ulations to examine the behavior of the proposed algorithms
for different spatial configurations of the wireless networks and
for various problem sizes. Comparative results with an existing
distributed AL method, the Alternating Direction Method of
Multipliers (ADMM) [32], are also presented. The ADMM is
known to exhibit fast convergence speeds in general, for small
though accuracies [32].

In all numerical experiments, we followed a channel model
encompassing large scale fading effects due to path loss and
small scale fading, i.e., we defined the channel between the
source Snm and relay Rnl as

fnm,nl = αnm,nl cnm,nl e
j(2π/λ)dnm,nl , (25)

where αnm,nl captures multipath fading, λ denotes the wave-
length of carrier waves and dnm,nl denotes the Euclidean
distance between the source Snm and relay Rnl, and cnm,nl =

d
−µ/2
nm,nl, where µ = 3.4 is the path loss exponent and represents

the power fall-off rate. Note that for simplicity, we did
not include large-scale shadowing effects in (25), however,
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Fig. 3. Two different spatial configurations of the multi-cluster network
beamforming problem with: a) 5 clusters, and b) 5 clusters but larger
interference levels compared to case (a), due to denser spatial positioning
of the users. The blue and green circles correspond to sources and users,
respectively, while the red dots depict the relays.

the extension is straightforward. Also, we assumed Rayleigh
fading such that the gains αnm,nl are i.i.d circularly sym-
metric complex Gaussian random variables with zero mean
and unit variance, i.e., αnm,nl ∼ CN (0, 1). Correspondingly,
for the purpose of simulations we constructed the channel
state matrices by sampling realizations of Rayleigh random
variables. The signal wavelength was assumed to be λ =
c/f = (3 · 108)/(2.4 · 109) = 0.125m which is a reasonable
choice for wireless transmissions utilizing ultra high frequency
carrier waves (2.4GHz).

In all the cases presented below, we have set the initial
values of the primal variables to 0, and randomly sampled the
dual variables from a uniform distribution in [0, 1]. Note that,
different initialization values did not appear to affect the con-
vergence speed significantly. Moreover, the penalty parameter
ρ is in general user defined in augmented Lagrangian methods.
In our simulations, we have found that fastest convergence
is obtained for values ρ ∈ [1, 10], while at the same time
preventing ill-conditioning.

In Fig. 4 we compare the two proposed methods, Direct and
Indirect, for the 2 different setups of Fig. 3. Fig. 3(a) depicts
a case with 5 clusters positioned in parallel, while Fig. 3(b)
presents a case with 5 clusters but denser spatial positioning
of the users. In both scenarios, we consider clusters containing
2 source-destination pairs and 5 relays, i.e., |Mn| = 2
and |Ln| = 5, ∀ n ∈ N , respectively. The same SINR
requirement is set for all users at γ = 10dB. For the direct
method, we assume that there exists at least one user that

suffers non-negligible interference from all clusters, such that
max{nm} |Inm| = 5, and hence we set τ = 2

5 = 0.4; recall
the pertinent discussion in section III-A. For the application
of the indirect method, we model two cases: i) one which the
available communication network between clusters is a simple
line formation, so that we impose the coupling constraints

ζ(i) = ζ(i+1), i = 1, 2, . . . , N − 1,

and ii) a denser network with all-to-all communication be-
tween clusters, so that we impose the coupling constraints

ζ(i) = ζ(j), ∀ i, j ∈ N .

The idea behind considering two different indirect cases is
to examine the effect of the communication network on the
underlying consensus operations on the decision variables of
the clusters. Note that each coupling constraint in the indirect
method involves two decision makers, such that τ = 1

2
always; see also the pertinent discussion in section III-B. The
simulation results in Fig. 4 show that in all cases the distributed
ADAL algorithm leads to very fast convergence. Here, we
note that the entries of the beamforming matrices obtained by
ADAL converge to the respective values of the centralized so-
lution. We also observe that the Indirect method is slower than
the Direct one. Moreover, it is true that the Indirect method
converges faster for denser communication networks, which
is in accordance with the literature on consensus algorithms
[38].

Fig. 4 also demonstrates how different system setups affect
the speed of convergence. We observe that problems with a
spatial configuration that induces higher interference levels,
such as the setup of Fig. 3(b) compared to the setup of
Fig. 3(a), tend to converge slightly slower. This is to be
expected, since interference dominated scenarios will have
SINR constraints that couple a relatively larger number of
clusters, compared to cases with less interference for each user.
This increased coupling naturally introduces the need for more
coordination between the coupled decision makers (clusters),
which leads to the slight increase in the number of iterations
needed until convergence. To avoid confusion, we note that
here we refer to the coupling between the beamforming
decisions of all clusters due to the SINR constraints, and not
the coupling from the consensus constraints (19) used in the
indirect method.

Next, we compare our proposed distributed algorithm with
the ADMM [32], which also utilizes augmented Lagrangians.
Fig. 5 presents the results corresponding to application of the
Direct method on both setups of Fig. 3.

Finally, in Fig. 6 we compare the two algorithms on a
larger size problem of 15 clusters, with 3 blocks of the
setup depicted in Fig. 3(b) positioned in parallel. In this case,
we assume that each user suffers non-negligible interference
from at most 10 other clusters, i.e, we take a safe estimate
max{nm} |Inm| = 10, and hence we set τ = 2

10 = 0.2.
Fig. 6(b) contains the convergence results for the constraint
violations

∑
n∈N ζn = 0, i.e., how much the sum differs

from zero. In all the scenarios considered, we can observe that
the ADAL algorithm converges significantly faster than the
respective ADMM. Note that, in all cases, we have used the
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Fig. 4. Comparison of the Direct and Indirect methods for: a) the case
depicted in Fig. 3(a), and b) the case depicted in Fig. 3(b). For the Indirect
method we employed two different considerations of the constraint set (18),
one for a line formation communication network between clusters (Indirect
L) and one for an all-to-all communication network (Indirect D) as explained
in text.

same initialization values for ADAL and ADMM. Moreover,
after extensive sensitivity analysis in our simulations, we found
that ADMM requires relatively larger values of ρ ∈ [4, 40],
compared to ADAL.

A. Discussion

As was shown above, the direct method converges faster
than the indirect approach in general. Nevertheless, depending
on the problem setup, it might be necessary that that indirect
method is applied. For example, consider the two different
setups of Fig. 3 and suppose the relays of each cluster are
responsible to perform the necessary computations for the
execution of ADAL. For the setup of Fig. 3(a), we can
observe that if one cluster exerts interference to the users
of a neighboring cluster, then most likely the corresponding
relays are in range to exchange the necessary messages (due
to the parallel spatial positioning of the clusters). However, the
same does not hold true for setups where the relays of certain
clusters may not be in communication range to exchange
messages directly, even though they exert interference on each
other’s users. For instance, that would be the case between
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Fig. 5. Comparison of the two different distributed algorithms, ADAL and
ADMM. The blue lines correspond to a problem with the setup of Fig. 3(a),
while the pink lines correspond to a problem with the setup of Fig. 3(b). The
results correspond to application of the Direct method.

the cluster pairs C1 − C4 and C3 − C5 in Fig. 3(b). In such
scenarios, we can employ the indirect method by defining the
consensus constraint set (19) appropriately, such that there
exists a feasible path of communication links between all
clusters, e.g. for the setup of Fig. 3(b) this could be ζ(1) =
ζ(2), ζ(2) = ζ(3), ζ(4) = ζ(2), ζ(5) = ζ(2). Alternatively, we
can apply the direct method by allowing cluster C2 to act as a
“message relay” and convey the necessary message exchanges
between the cluster pairs C1−C4 and C3−C5 at each iteration
of ADAL. On the other hand, there might exist cases where
there is no feasible communication path between all clusters,
i.e., it is not possible to define a weakly connected graph E for
the consensus constraints (19). In such scenarios, successful
application of a distributed algorithm would require the users
to act as “message relays” and convey the necessary message
exchanges between the clusters.

V. CONCLUSIONS

We have considered the problem of cooperative beamform-
ing in relay networks, for scenarios in which multiple clusters
of source-destination node pairs, along with their dedicated
relays, coexist in space. Since the original formulation leads to
a non-convex problem, we have formulated an approximation
of the problem in convex form and proposed a new, distributed
optimization algorithm that allows for autonomous computa-
tion of the optimal beamforming decisions by each cluster,
while taking into account intra- and inter-cluster interference
effects. The advantage of the proposed approach is that it is
a first order method utilizing augmented Lagrangians, thus it
combines low computational complexity with the robustness
and convergence speed properties of regularization. We have
proposed two different ways of implementation and compared
their relative performance. We have compared our method to a
popular state-of-the-art distributed algorithm and showed that
we obtain significant performance gains. To the best of the
authors’ knowledege, this is the first distributed solution for
relay beamforming problems.
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Fig. 6. Comparative convergence results for the ADAL and ADMM
algorithms on a scenario with 15 clusters and γ = 10dB: a) Total transmitted
power at the relays and b) Constraint feasibility evolution for the coupling
constraints

∑
n∈N ζn = 0. The results correspond to application of the

Direct method.
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