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Abstract—Distributional reinforcement learning (DRL) en-
hances the understanding of the effects of the randomness in
the environment by letting agents learn the distribution of a
random return, rather than its expected value as in standard
reinforcement learning. Meanwhile, a challenge in DRL is that
the policy evaluation typically relies on the representation of the
return distribution, which needs to be carefully designed. In this
paper, we address this challenge for the special class of DRL
problems that rely on a discounted linear quadratic regulator
(LQR), which we call distributional LOR. Specifically, we provide
a closed-form expression for the distribution of the random
return, which is applicable for all types of exogenous disturbance
as long as it is independent and identically distributed (i.i.d.).
We show that the variance of the random return is bounded
if the fourth moment of the exogenous disturbance is bounded.
Furthermore, we investigate the sensitivity of the return distri-
bution to model perturbations. While the proposed exact return
distribution consists of infinitely many random variables, we show
that this distribution can be well approximated by a finite number
of random variables. The associated approximation error can be
analytically bounded under mild assumptions. When the model is
unknown, we propose a model-free approach for estimating the
return distribution, supported by sample complexity guarantees.
Finally, we extend our approach to partially observable linear
systems. Numerical experiments are provided to illustrate the
theoretical results.

Index Terms—Distributional LQR, distributional RL, distri-
bution sensitivity, policy evaluation, partially observable system

I. INTRODUCTION

In reinforcement learning (RL), the value of implementing
a policy at a given state is captured by a value function, which
models the expected sum of returns following this prescribed
policy. Recently, [1] proposed the notion of distributional rein-
forcement learning (DRL), which learns the return distribution
of a policy from a given state, instead of only its expected
return. Compared to the scalar expected value function, the
return distribution is infinite-dimensional and contains far
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more information. It is, therefore, not surprising that a few
DRL algorithms, including C51 [1], D4PG [2], QR-DQN [3]
and SDPG [4], dramatically improve the empirical perfor-
mance in practical applications over their non-distributional
counterpart. By encompassing the entire distribution, DRL is
able to provide a comprehensive framework, for instance, for
risk-averse learning, facilitating a deeper understanding and
more effective management of uncertainties [5]-[8].

In parallel with the celebrated Bellman equation in the tra-
ditional RL, an alternative random variable (or distributional)
Bellman equation acts as the theoretical foundation of DRL. It
has been shown in [1] that the return distribution satisfies the
distributional Bellman equation and the distributional Bellman
operator is a contraction in (the maximum form of) the
Wasserstein metric between probability distributions. A natural
yet fundamental question in DRL is:

Given a policy, how to (exactly) characterise the random
return that fulfills the random variable Bellman equation?

The answer to this question provides the structural information
of the return distribution, which enables a better understanding
of the value of implementing a policy in the DRL setting.

To the best of our knowledge, this problem has received
limited attention. One of the challenges is the computational
intractability arising from the fact that the return distribution is
in an infinite-dimensional space. Approximations thus become
necessary for practical implementation - cf. categorical [1],
quantile function [3], and sample-based [4] methods. Fur-
thermore, although some recent efforts have been devoted
to applying DRL to partially observable systems [9], no
theoretical foundations, including the characterisation of the
random return, have been built for these partially observable
models.

In this paper, we solve the above problem for discrete-
time linear systems with stochastic additive disturbances.
Specifically, we characterise the random cost for the classical
discounted linear quadratic regulator (LQR) problem, which
we term distributional LOR. We investigate the fundamental
properties of the characterised random cost. Furthermore, we
explore the extension to partially observable systems and
derive fundamental properties of the characterised random
cost.

A. Related Work

The problem under investigation falls within the domain of
policy evaluation in DRL, specifically focusing on predicting
the full probability distribution. This task poses a unique chal-
lenge because the full probability distribution is infinitely di-
mensional, necessitating the use of distribution parametrization
techniques to render it computationally feasible. Bellemare



et al. [1] propose a categorical method that discretizes the
return distribution by partitioning the return distribution into
a finite number of uniformly spaced atoms in a fixed region.
Subsequent work [10] delves into the convergence analysis of
categorical policy evaluation and shows that the distributional
projected Bellman operator with categorical representation is
a contraction with respect to the Cramér distance metric. One
drawback of the categorical representation is that it relies on
prior knowledge of the range of the returned values. To address
this limitation, [3] proposes a quantile temporal-difference
learning algorithm that learns the quantiles of a probability
distribution, and its convergence property is established in
[11] using the Wasserstein-oo metric. However, most of the
existing algorithms and analysis of DRL are tailored to ad-
dress problems with discrete state spaces, which cannot be
applied to the linear quadratic control problem with continuous
state space. It is worth mentioning that the works [4], [12]
investigate DRL with continuous state space and use a repa-
rameterization method to represent the distribution of random
variables through a neural network. Despite these significant
advancements, there is no theoretical guarantee regarding the
quality of the learned distributions in [4], [12]. It still remains
an open problem to derive an analytical expression for the
return distribution with continuous state space. A challenge
that further complicates the problem is represented by the
infinitely many decision choices of states.

A related research line is the recent study of RL in the LQR
context, which focuses on learning the expected return through
interaction with the environment, see [13]-[19]. For example,
[15] proposes a model-free policy gradient algorithm for
LQR and shows its global convergence with finite polynomial
computational and sample complexity. Moreover, [19] studies
model-based RL for the linear quadratic Gaussian (LQG)
problem, in which a model is first learnt from data and then
used to design a policy. In this setup, evaluating the expected
return for a policy is easily computed from the Riccati
equation, but these methods are not capable of characterising
other aspects of distributional information. Works exploring
the distributional information include risk-averse control [20]-
[27] or distributional robust control [28]-[31]. However, these
methods cannot analyse the return distribution.

B. Contributions

This paper aims at studying the return distribution for linear

quadratic control problems.

1) We provide an analytical expression of the random
return for distributional LQR and prove that this return
function is a fixed-point solution to the random variable
Bellman equation (Theorem 1). Specifically, we show
that the proposed analytical expression consists of in-
finitely many random variables and holds for arbitrary
1.i.d. exogenous disturbances, e.g., non-Gaussian noise
or noise with non-zero mean. This characterisation can
recover the expected cost, complementing the classical
LQR. We remark that the random return naturally con-
tains more information than the expected cost and can
thus be particularly useful for policy evaluation in a risk-
averse setup [32].

2) We analyse the variance of the random return and
show that it is bounded if the fourth moment of the
disturbances is bounded (Theorems 2). Furthermore,
we investigate the distributional sensitivity with respect
to model perturbations. Under mild assumptions, we
show that the maximal difference between the exact and
perturbed return distributions can be bounded by the
extent of model perturbations (Theorem 3).

3) We develop an approximation of the distribution of
the random return using a finite number of random
variables when the model is known. We show that the
maximal difference between the exact and approximated
return distributions decreases linearly with the number
of random variables (Theorem 4). In the model-free
case, we approximate the return distribution using state
trajectories. We show that, with high confidence, the
distribution approximation error deceases linearly with
respect to the trajectory length and sub-linearly with
respect to the number of trajectories (Theorem 5).

4) Finally, we derive analytical evidence that most results
for distributional LQR have corresponding counterparts
for partially observable systems, including exact charac-
terisation of the random return, variance bound, distribu-
tional sensitivity under perturbations, and distributional
approximation using a finite number of random variables
(Corollaries 1-4). These extensions build on the aug-
mented system introduced by a given linear feedback
controller and a linear observer, aligning with the well-
known separation principle [33]. These results provide
insight into extending DRL to partially observable sys-
tems.

The work that comes closest to addressing the problems
above is our prior work [32]: the current contribution addi-
tionally analyses the variance of the random return and the
distributional sensitivity with respect to model perturbations.
Moreover, this work constructs a confidence bound on the dis-
tribution approximation error for the model-free case when the
system matrices are unknown. Additionally, we newly derive
corresponding counterparts for partially observable models.

C. Organisation and Notations

The paper is organized as follows. In Section II, we provide
background on LQR and define our problem. In Section III,
we provide the main results for distributional LQR, including
the analytical expression of the random return, variance bound,
distributional sensitivity under perturbations and model-based
and model-free distribution approximations. Section IV pro-
vides the main results for partially observable linear systems.
In Section V, we experimentally verify our theoretical results.
Finally, we conclude the paper in Section VL.

We denote by R the set of real numbers and N the set of
natural numbers. For a symmetric matrix P, the notation P >
0 means that P is positive definite. For a matrix Q € R™"*",
we denote by ||Q|| and ||Q|| » its spectral norm and Frobenius
norm, respectively. To indicate that two random variables Z
and Z, are equal in distribution, we use the notation Z; 2 7.
For a random variable Z, E[Z] denotes its expectation.



II. PROBLEM STATEMENT

Consider a discrete-time linear control system:
{Et+1 = A(Et + But + V¢,

where z; € R”, u; € RP, and vy € R" are the system state,
control input, and the exogenous disturbance, respectively.
We assume that the exogenous disturbances v; with bounded
moments, ¢t € N, are i.i.d. sampled from a distribution D of
arbitrary form.

A. Classical Discounted LOR

The canonical LQR problem aims to find a control policy
7 : R™ — RP to minimise the objective

oo
Ju)=E th(m?th +up Ruy) |,

t=0
where @, R are positive-definite constant matrices and v €
(0,1) is a discount parameter. Given a control policy T,
let V™(z) = E[>;2 7" (2f Quy + uf Ruy)| denote the ex-
pected return from an initial state zp = z with u; = 7(zy).
For the static linear policy m(z;) = K, the value function
V7™ (x) satisfies the Bellman equation

V™(z) =2T(Q+ KTRK)x 4+~ E
z'=(A+BK)z+vg

V7 ("),
6]

where the capital letter 2’ denotes a random variable over
which we take the expectation.

When the exogenous disturbance v; is normally distributed
with zero mean, the value function is known to take the
quadratic form V™(x) = 2" Pz + g, where P > 0 is the
solution of the Lyapunov equation P = @Q + KTRK +
fyA};PA x and q is a scalar related to the variance of v;. In
particular, the optimal control feedback gain is K* = —y(R+
vBTPB)"'BTPA and P is the solution to the Riccati equa-
tion P = yATPA —y?ATPB(R+~+BTPB)"'BTPA + Q.

B. Distributional LOR

Motivated by the advantages of DRL in better understanding
the effects of the randomness in the environment and in
considering more general optimality criteria, in this paper we
propose a distributional approach to the LQR problem. Unlike
classical RL, which relies on expected returns, DRL [34] relies
on the distribution of random returns, which is referred to
return distribution. The return distribution characterises the
probability distribution of different returns generated by a
given policy and, as such, it contains much richer information
on the performance of a given policy compared to the expected
return. In the context of LQR, we denote by G™ () the random
return using the static control strategy u; = 7(x;) from the
initial state xg = x, which is defined as

G™(z) = nyt(xtTth + uf Ruy),
=0

up = m(2), o = T 2)

It is straightforward to see that the expectation of G™(z) is
equal to the value function V7(x). The standard Bellman
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(a) Probability density values of (b) Probability density values of
three types of disturbance v;. the random cost G™(x) induced
by three disturbances.

Fig. 1: The PDFs of three types of disturbance and of their
corresponding random costs in LQR. The PDFs of the random
costs are generated by Algorithm 1 in this paper.

equation in (1) decomposes the long-term expected return into
an immediate stage cost plus the expected return of future
actions starting at the next step. Similarly, we can define the
random variable Bellman equation for the random return as

G™(x) 22T Qa + 7(x) " R (z) + G™ ('),
2’ = Az + Br(z) + vo. (3)

Here we use the notation 73 L Z5 to denote that two random
variables 71, Zs are equal in distribution. Compared to the
expected return in LQR, which is a scalar, here the return
distribution is infinite-dimensional.

The following example is used to highlight the need of
considering the random return.

Example 1. Consider the discrete-time scalar linear system
Ti41 = Xt + up + vy and three different types of distur-
bance vy: normal distribution N (0, 1), uniform distribution
U[—\/g, \/3} and multimodal distribution which is charac-
terised by the probability density function 2(PDF ) (p1(2) +

p2(2))/2, where p;(2) = \/%Ui e;vp(—(z;ﬁi;) ), i =1,2, with
w1 = —0.99, ps =0.99, o1 = 05 = V1 — 0.992. Their PDFs
are shown in Fig. I(a). It can be verified that the mean of v; is
zero and the variance is 1 for all three types of disturbance. We
set the initial state t = 3, Q = R = 1, and v = 0.6. Then, the
optimal controller for the three disturbances is the same and
given by uy = —0.4684x;. The value function V™ (x) in (1) of
implementing the optimal controller for the three disturbances
is the same as well since the variance of vy is the same.

However, the distribution of the random return G™ (z) varies
significantly for the three disturbances, as shown in Fig. 1(b).
We observe that the distributions of the random cost for
the Gaussian and uniform disturbances are close to chi-
square distributions, but the distribution for the multimodal
disturbance exhibits multiple peaks. Hence, the distribution of
the random return contains more information than in the LOR
problem, offering insights into risk analysis, which the mean
value alone cannot capture: the random return G™(x) enables
us, for instance, to select policies that minimize risks or satisfy
probabilistic constraints, which is not possible to do from the
value function V™ (z).




This paper addresses the following research problems. We
first analytically characterise the random return that fulfils the
random variable Bellman equation for LQR. Subsequently,
we explore the fundamental properties of the random return
and its distribution: variance bound, distributional sensitivity
under perturbations, and model-based and model-free distri-
bution approximations. Finally, we extend our investigation to
encompass partially observable linear systems.

III. MAIN RESULTS ON DISTRIBUTIONAL LQR

This section focuses on the random return for the LQR
problem.

A. Characterisation of the Random Return

In this section, we precisely characterise the distribution
of the random return that satisfies the distributional Bellman
equation (3). Given a static linear policy 7(xy) = Ky, we
denote by G¥(z) the random return G™ () under the policy
m(x¢) from the initial state g = x , which is defined as

GX(x) = Z Yl (Q+ KYRK)x;, x9=x. (4)
t=0

The random return GX(z) satisfies the following random
variable Bellman equation

G¥ () L tTQrx +vGE(2"), o' = Agz 4w, (6)

where Ax = A+ BK and Qg = Q + KTRK. In the
following theorem, we provide an explicit expression of the
random return G¥ (z). The proof can be found in [32].

Theorem 1. [32] Suppose that the feedback gain K is
stabilizing and satisfies | Ak|| = px < 1. Let

GB(x) = 2TPx +2 ZykﬂwgPA’;(Hm

k=0
00 9] k—1
+ Z 7k+1w,;FPwk +2 Z yk“wgP Z A];(_TwT, (6)
k=0 k=1 =0

where P is obtained from the Lyapunov equation P = @) +
KTRK + ’yA}PAK, and the random variables wy, ~ D are
independent from each other for all k € N. Then, the random
variable G¥ () defined in (6) is a fixed point solution to the
random variable Bellman equation (5).

We note that the expression of the random return is mean-
ingful only when the system is stable. When ensuring stability,
this analytical expression applies to arbitrary exogenous dis-
turbances including non-Gaussian, uniform noises and noises
with non-zero means, as long as the disturbances are i.i.d..
For each realization of the sequence {wy}7o,, G¥(z) is
represented as an infinite series, which is convergent when
these wy, are bounded.

Remark 1. It is worth mentioning that Theorem I holds for
a random initial state as long as it is independent of the
process noise. That is, when x is random and is independent
of the exogenous noise v; in the system, the random return

GX (x) has the same expression as in Theorem 1. To maintain
consistency in our subsequent results, where the upper bounds
depend on the initial state x, we present the results for a fixed
initial state.

If we assume Elwy] = 0, Elwywf] = o021, and the
disturbances wy, are i.i.d., we have that the expected value
of the random return is 2 Pz + 02 2= Tr(P), which aligns
with the classical result in LQR. This observation to some
degree validates our characterisation of the random return.

Remark 2. Recall that the PDF of the sum of two independent
random variables is the convolution of their two PDFs.
Computing the accurate probability distribution function of
G¥ (x) in (6) is a challenging task due to the potential need for
an infinite number of convolution operations. However, we can
discuss the approximate shape of this distribution under differ-
ent conditions. Suppose that the random variable wy, follows
a normal distribution. When the initial state is significantly
large, the random variable Y, Ll PAR L dominates
the random return. This sum follows a Gaussian distribution,
and as a result, the overall distribution of G (z) tends to
resemble a Gaussian distribution. Conversely, when the value
of x is small, the term " p—_o Y* 1wl Pwy, becomes dominant.
This sum follows a chi-square distribution, and consequently,
the entire distribution of G¥(x) takes on a chi-square-like
shape. More details can be found in Section V.

B. Bounded Variance of the Random Return

In this section, we analyse the variance of the random return
GX(z), which is presented in the following theorem. The
proof can be found in Appendix A.

Theorem 2. Assume that Elwy,] = 0 and E[||wy|*] < o,
for all k € N. Suppose that the feedback gain K satisfies
|Ak|| = px < 1. Then, the variance of the random variable
G¥(x) is bounded.

Although G¥ (z) in (6) is composed of infinitely many ran-
dom variables, Theorem 2 shows that its variance is bounded
if the fourth moment of the disturbance is bounded. The
fourth moment qualitatively is a measure of the tail of a
probability distribution. To ensure a finite variance for the
random cost G¥(x), we thus require that the tail of the
disturbance distribution is not heavy. This condition seems
indispensable, since G () includes a term w Pwy,.

C. Sensitivity Analysis of the Return Distribution

In this section, we investigate how perturbations on matrices
influence the distribution of the random return G (x). Sup-
pose that we perturb the matrices A, B by an amount AA,
AB, respectively. Let

A=A+AA, B=B+AB, Ax=A+ BK,
A = A+ BK, AAx =Ag — Ak,
and let P and P be the solutions to
P—-Q—-KTRK = yALPA,
P—-Q—-KTRK =yALPA,



respectively. With the introduction of perturbations on matri-
ces, we define the perturbed random variable

GE(z)=2"Pr+2 Z Al pAkT Ly
k=0

[e%s) [e's) k—1
+ Z ’YkJrlw,?]E’wk + 2 Z 'ykJrleP Z A];(_TwT. @)
k=0 k=1 =0

Let X and F¥ denote the cumulative distribution function
(CDF) of G*(x) and G¥(x), respectively. In the following
theorem, we show that the sup difference between FX and
Ff is bounded when the perturbation is reasonably small.
The proof can be found in Appendix B.

Theorem 3. Assume that the PDF of wy is bounded, and
satisfies Elwfwy] < o2 for all k € N. Suppose that the
feedback gain K satisfies maX{HAKH,H;lKH} = prg < L
Suppose that | > 2¢, where | = HH’1H71, H=1I1I-
VAL @ AL, and e = || Ascl p [ AAx || p+3 A A | Then,
we have

sup | Ff¥ (2) — F(2)] < & |AAk]| + & |AAx]*, ®)

where the constants ¢1,Co (made explicit in the proof) depend
on the system matrices, the initial state value x, and the
parameters vy, pi, 0.

Traditional sensitivity analysis investigates the impact of
perturbations on solutions to the Lyapunov equation, see, e.g.,
[35]. Building on this result, Theorem 3 shows that we can
also bound changes in the perturbed return distribution.

D. Model-Based Approximation of the Return Distribution

The expression of the random return G¥(z) defined in
(6) is composed of infinitely many random variables. In this
section, we investigate how to approximate the distribution of
this random return using a finite number of random variables.
A natural idea is to consider only the first N terms in the
summations in the expression (6) and disregard the terms for
k larger than N, which yields the following:

N-1
GR(z) = 2T Pz +2 Z ALl pAkyty
k=0
N—1 N-1 k—1
+ ) Al Pu +2 ) Al Py AT (9)
k=0 k=1 =0

Let F[y denote the CDF of G (x). The following theorem
provides an upper bound on the difference between FX and
FX, and shows that the sequence {G%X(z)}nyen converges
pointwise in distribution to GX (z), V2 € R™. The proof can

be found in [32].

Theorem 4. [32] Assume that the PDF of wy, is bounded,
and satisfies Elwlwy] < o2, for all k € N. Suppose that the
feedback gain K satisfies | Ax|| = px < 1. Then, the sup
difference between the CDFs FX and le,(N is bounded by

sup |[FfS (z) — FFx(2)] < cov™, (10)

Algorithm 1: Model-free Distributional Policy Evalu-
ation
Require: initial values z, controller K
1: for iterationm =1,..., M do
2:  Initial state x,, ¢ = x;

3 for timet =0,1,..., 7 — 1 do

4 Implement controller w,, ; = K, ;;

5: Observe Ty, 41 = AZm ¢ + Bl ¢ + Vs

6: end for .

7. Obtain GE-T'(x) = Y v'ag, (Q + KT RE )z 4
8: end for =

S HGET(2) < 2).

m=1

9: Construct EDF FmKAZ(z) = ﬁ

where cq is a constant (again, made explicit in the proof) that
depends on the system matrices, the initial state value x, and
the parameters v, pi, 0.

Remark 3. The bound on the distribution approximation in
(10) relies on the conditions of Theorem 4, which ensure
that the PDF of G is continuous and bounded. Note that
these conditions are not strict, and indeed hold for many
noise distributions commonly used in linear control systems,
including the Gaussian and uniform ones.

E. Model-Free Approximation of the Return Distribution

When the matrices A, B are unknown, one cannot use the
exact form of the random return to compute the distribution.
In this section, we propose a model-free method to estimate
the distribution of the random return.

In the absence of information about the system matrices A
and B, one costly yet straightforward approach to estimate the
distribution is by directly sampling the random return G ()
as defined in (4). This random return represents the sum of
discounted rewards over an infinite time horizon. To make
the computation practically manageable, we truncate the time
horizon and disregard rewards occurring after time step 7.
Accordingly, we define the random variable

T
Gl (@) =Y A2l (Q+ K"RK)zy, zo=w. (11
t=0

We denote by FX7(z) the CDF of G*:T(z) and recall that
FX(2) is the CDF of G¥(z). Intuitively, FX7(z) closely
approximates FX(z) when T is sufficiently large. This is
due to the fact that every term beyond time step 7' becomes
negligible after being discounted by ~'. Therefore, we sample
the random return G*7(z) to estimate the distribution of
GE(z).

The detailed model-free distributional policy evaluation is
presented in Algorithm 1. Specifically, at each iteration m,
starting from the initial state x,,0 = x, we repeatedly
implement the static controller u,, ; = Kx,,; and generate a



total of M trajectories. Given the m-th trajectory {x, + }1—o.7
with ,, 0 = x, define the sampling cost

Zv

Using GE-T(z), m = 1,..., M, the empirical distribution
function (EDF) is constructed by

KT
G

HQ+ KTRK)x . (12)

M

S HGE (@) < 2,

m=1

1
KT

L, M( z) = M (13)
where 1{-} denotes the indicator function. Intuitively, the
empirical distribution Ff 7(2) is close to the distribution
FET(2) when M is sufficiently large and to the distribution
FK (z) when T is also large. The following theorem provides

an upper bound on the difference between the distributions
F;{ 17 (2) and FX (). The proof can be found in Appendix C.

Theorem 5. Assume that the PDF of wy is bounded, and
satisfies Elwy] = 0 and Elwfwy] < o2 for all k € N
Suppose that the feedback gain K satisfies || Akl = px < 1.
Then, with probability at least 1 — §, we have

- In(1/0)
K,T K
sup|Fx7M (2) = F;' (2)] < i
t Fiax 1Qic |7 i T+ eapi ™ o), (14)
where fiax is the maximum of the PDF of the mndzom
variable G¥T(z), Qg Q + KTRK, ¢; = Jﬂ‘pz,
K

— 2||z|le Ca — a?
T=px)A=7px)” 3~ T=NT=7px)

Theorem 5 shows that the accuracy of the distribution
estimate depends on the choice of two key parameters: the
time horizon 7' and the number of generated trajectories M.
When both M and T are sufficiently large, Ff A/:[F (z) can
serve as a reliable approximation for FX(z). Supported by
this result, we consider the return distribution learned by
Algorithm 1 with sufficiently large values of M, T as the true
return distribution in the simulation part. Practically, given a
target approximation error €, we can determine the required

. In(1/6
values of M and T by ensuring thaty/ ( 1\51) < (1

and frax |Qk || 7T (c1p% 2ATHD 4 e, Pk +¢3) < ac for any
€ (0,1).

C2 =

— a)e

Remark 4. We note that the random variables G& (x) and
GE-T(x) serve as the approximations to the true random
return GX () by truncating the number of random variables
and the time horizon, respectively. As shown in Theorems 4
and 5, increasing the number of random variables or extending
the truncated horizon definitely enhance the approximation
accuracy for model-based and model-free methods, respec-
tively. However, the associated costs one needs to pay to
obtain their distributions are usually different. As shown in
Table I, the model-free method requires a sufficiently large
value of M to achieve a reliable distribution estimate with
a high probability. In contrast, the model-based method can
attain the same level of accuracy with probability 1 using
a significantly smaller number of random variables. Hence,

MB method MF method MF method
v UB N T,M(© =5%) T,M(=1%)
0.6 0.02 11 (100,4000) (100,6000)
0.6 0.01 12 (100,15000) (100,23000)
0.8 0.02 24 (100,4000) (100,6000)
0.8 0.01 27 (100,15000) (100,23000)
0.95 0.02 112 (200,4000) (200,6000)
0.99 0.02 698 (1000,4000) (1000,6000)
TABLE I: Comparison of model-based (MB) and model-

free (MF) approximation methods. Here v is the discount
parameter; UB is the bound in the right hand side of (10) and
(14) for model-based and model-free methods, respectively;
N is the smallest integer such that coyY < UB; and T, M (6)
denote the pair comprising the horizon length 7' and the
number of trajectories M required so that the approximation
error in (14) is bounded by UB with probability at least 1 —§.

when the system matrices and the disturbances are known, the
computation of the distribution of GX (x) incurs less costs. It
is also worth noting that the model-free method is not sensitive
to the discount parameter ~ while the model-based method is.

Remark 5. For the discounted infinite-horizon LOR problem,
the stability criterion is relaxed to requiring that \/5(A+BK)
is stable [36], [37]. However, when analyzing the entire return
distribution, our results indicate that we need A + BK to
be stable, i.e.,
condition. This is because the random return G* (z) includes
a term 23 0, Y w sz : AR, necessitating that
Ak ™ remains bounded fo ensure the convergence of the series.
Thls issue does not arise in the expected return case, since the
term involving the process noise disappears when taking the
expectation, due to the zero mean of wy.

IV. EXTENSION TO PARTIALLY OBSERVABLE SYSTEMS

In this section, we analyse the case when the state is not
fully observable. We show that most of the results for LQR
can be extended to this partially observable case.

Consider a partially observable discrete-time linear control
system:

Tir1 = Axy + Buy + vy,
= C’xt + S¢,

where z; € R, u; € RP, y, € RY v, € R™, and s, € R are
the system state, control input, system output, process noise,
and observation noise, respectively. We assume that the system
is observable and controllable. By introducing the feedback
gain K and the observer gain L, we define the estimated state
and controller

Tiqp1 = Az + Bug + L(yt — Ci‘t),
— Kiy.
By defining %, = x; — @, 7y = [2F,3}]T, we get the
augmented system
Tiy1 = Arr®, + vy, (15)



where
- A+ BK —-BK _
AKL:{ % A—LC}’W:F{Z’E}’
I 0
F_,[I _L}.

If E[v;] = E[s;] = 0, and the collection of v; and s; is i.i.d.,
it is easy to verify that E[7;] = 0 and the collection of 7; is
i.i.d.. We denote the distribution of ©, by D. Define Qx :=
[ Q+KTRK —KTRK

_KTRK KTREK and the random return

GRL(z Z'y zf Qg + uf Ruy)

Yz} Qe + 2 KT RK 7)

~
Il
=

V'ZL QKT To =7, (16)

=

“
i
=

where 7 = [27,#F]T. The random return GXL(z) satisfies

the following random variable Bellman equation
GEL(z) 2 X' = Ag 17 + .
a7

TQK1'+’VGKL( )a

In the following corollary, we provide an explicit expression
of the random return G (z). The proof can be obtained by
applying the results in Theorem 1 to the augmented system
(15) and is omitted.

Corollary 1. Suppose that the feedback gain K and observer
gain L are chosen such that HAKLH = prg < 1. Let

GEL(z) = zT Pz + 227“%}.?%&%‘;
) k—1

+) M TPwk+2Z'yk+1 o Py Ak o, (18)
k=0 k=1 7=0

where P is obtained from the Lyapunov equation P =
QK + VA?(LPAKL, and the random variables wy, ~ D are
independent from each other for all k € N. Then, the random
variable GXL(z) defined in (16) is a fixed point solution to
the random variable Bellman equation (17).

The variance bound part is similar to that of the fully
observable case, and is presented in the following corollary.
The proof can be obtained by following a similar methodology
to that employed for Theorem 2 and is omitted.

Corollary 2. Assume that E[wy,] = 0 and E|||wy||!] < 64, for
all k € N. Suppose that the feedback gain K and observer
gain L are chosen such that HAKL u = pK < 1. Then, the
variance of the random variable GK*(x) is bounded.

The sensitivity analysis for the partially observable case is
similar to that of the fully observable case. Suppose that we
perturb the matrix Ay by an amount AAgy. Define the

matrix Ag; = Agr + AAgp and the perturbed random
variable

GRE(7) = 5Pz + 23 el PA L,
k=0
[e%s) k—1
+Z'yk+1 Pwk _~_227k+1 7TPZAI€ T—T (19)
k=0 k=1 7=0

where P = QK + ’y/l};Ll—z’/lKL. Let FfL and FfL denote
the CDF of GX'(x) and G’ (x), respectively. We obtain
the perturbation for partially observable case in the following
corollary. The proof can be adapted from that of Theorem 3
and is omitted.

Corollary 3. Assume that the PDF of wy is bounded, and
satisfy Elwfwy] < &2 for all k € N. Suppose that the
feedback gain K and the observer L are chosen such that
max{HAKLH HAKLH} = pg < 1. Suppose that | > 2
where | = ||H 1” =I®I- 'yA T, ® AL, and
E=1y HAKLHF HAAKLHF 7 HAAKLHF. Then, we have
~ _ - _ - 2
sup |FEL(2) — FEE(2) < & ||AAKLH + € HAAKLH ,
where the constants ¢, o depend on the system matrices, the
initial state value X, and the parameters v, px, o

The approximation part is similar to that of the fully
observable case. Let

N
GNM (@) =z"Pz+2) Aol PAV
k=0
k—1
+ Z Vg Py, + 2 Z Vol Py AR T, (20)
k=0 k=1 =0

Let FXL and FKL denote the CDF of GEL(z) and GKL(x),
respectively. In the following theorem, we show that the
approximation error with a finite number of random variables
can be bounded in the partially observable case. The proof can
be adapted from that of Theorem 4 and is omitted.

Corollary 4. Assume that the PDF of Wy is bounded, and
satisfy Elwlwy] < &2 for all k € N. Suppose that the
feedback gain K and observer gain L are chosen such that
HAKLH = px < 1. Then, the sup difference between the
CDFs FEL and Ffﬁ is bounded by

sup |F,* 5 (2) = Fyin (2)] < @™, e2))

z

where Co is a constant that depends on the system matrices,
the initial state value , and the parameters v, pi, 0

We remark that the model-free approximation (Theorem 5)
is not applicable for partially observable systems. Unlike the
distributional LQR where the state is directly measurable, it
is nontrivial to achieve an accurate estimation of the states
such that the cumulative estimation error can be controlled
arbitrarily small using only the observation sequence {y;} and
control sequence {u;} (when the system model is unknown).
Thus, we leave this problem for future work.



V. EXPERIMENTS

In this section, we consider an idealised example of data
center cooling with three sources coupled to their own cooling
devices [13], [18], [38] with the dynamics x4+1 = Az;+Bui+
v¢, where

1.01 001 O 100
A=1]001 101 001 |,B=|0 1 0
0 0.01 1.01 0 0 1

We select Q = I and R = I. The exogenous disturbances
have standard normal distributions with zero mean.

Even for this linear system, it is impossible to simplify
the expression of the exact return distribution, which still
depends on an infinite number of random variables. Thus, as
a baseline for the return distribution, we generate an empirical
distribution by Algorithm 1 with a sufficiently large amount of
samples that approximates the true distribution of the random
return. Specifically, we run Algorithm 1 with the parameters
T = 3000 and M = 30000. By Theorem 5, the maximal
difference between the generated empirical distribution and
the true one is bounded by 0.0088 with probability at least
99%, which means that the generated empirical distribution is
reliably close to the true one. We use the sample frequency
over evenly-divided regions as an approximation of the PDF.

A. LOR

We first consider the fully observable case. We select
different values of v and z(, and fix the optimal controller
gain K = —y(R +yBTPB)~1PA, where P is the solution
to the classic Riccati equation P = yAT PA—~+?ATPB(R+
vBTPB)"'!BTPA + Q. The controller is given by

56.19 0.7692 0.0027
0.7692  56.20 0.7692
0.0027 0.7692 56.19

K =-0.01

In what follows, we verify the results in Theorem 4 by
evaluating the quality of the approximation of the return
distribution using different numbers of random variables.
We denote here by fx the distribution of the approximated
random return G (7¢) in (9) obtained considering N random
variables. We compute the constant ¢y in equation (10) and
the required number of random variables that guarantees
sup, |FE(2) — FfN(z)| < 0.01, meaning that the estimate
distribution is sufficiently close to the true distribution. As
shown in Table II, an increasing number of random variables
is needed when dealing with larger values of ~ and/or xg.
The simulation results are shown in Fig. 2. Specifically, Fig. 2
(a) and (c) show that when -~y is small, the return distribution
can be well approximated using only a few random variables
(N = 7 works well). However, when ~ approaches 1, more
random variables are needed for an accurate approximation:
as shown in Fig. 2 (b) and (d), we need N = 15 to have a
good approximation of the return distribution in the case of
v =0.8.

Moreover, the value of the initial state xy has an influence
on the shape of the return distribution. When z is large, the
random variable wZPA’;(HxO dominates and, therefore, its

el ) co No

0.6 [1;1;1]  0.5447 8
0.8 [1;1;1] 05917 19
0.6 [6:6;6] 1.7550 11
0.8 [6:6:6] 2.6134 25

TABLE II: Constant ¢g in (10) and required number Ng to
obtain a good estimate for different values of v and x( in LQR,
where Ny is the smallest integer such that sup, |FX(z) —
FfNO (2)| < eoy™e <0.01.

o
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(e) v =0.95, zo = [1;1;1]. (f) v = 0.95, zo = [6; 6; 6].

Fig. 2: Return distribution and its approximation with finite
number of random variables for different values of v and zg in
LQR. Alg. 1 denotes the distribution returned by Algorithm 1
and fy denotes the distribution of the approximated random
return G (z).

distribution is close to a Gaussian distribution, as shown in
Fig. 2 (¢) and (d). If instead x( is small, then the random
variable w} Pwy, plays a leading role, so the overall distribu-
tion is close to the chi-square one, as shown in Fig. 2 (a) and
(b).

Next we perturb the matrices A, B by an amount €4 A and
ep B, respectively. We select xg = [1;1;1]. We compute the
constants of ¢;, ¢z, the true sup difference between original
and perturbed distributions, and the upper bounds in (8). The
results are shown in Table III. We observe that the perturbed
distribution becomes significantly distinct from the original
distribution when 7, € 4, and €p take on larger values. We also
note that our computational upper bound becomes conservative
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Fig. 3: Original and perturbed return distributions for different
values of v, €4 and ep in LQR.

o €A € 1 Co Sup difference UB
0.6 0.1 0.1 6.5 4.6 0.051 0.33
06 04 04 203 119 0.24 0.52
0.8 0.1 0.1 124 9.9 0.056 0.53
08 04 04 305 209 0.26 0.80

TABLE III: Computation of the actual maximal difference
between the perturbed and the original distributions, and
computational upper bound (UB) for different values of ~,
€4 and eg in LQR. The constants ¢; and ¢ are those in (8).
Sup difference is the value of sup, |[FX(z) — FX(z)| while
UB is the value of & [|AAk| + & || AAk|°.

when ~ is close to 1. The perturbed return distributions for
different values of €4 and ep are shown in Fig. 3. We observe
that large perturbations change the distributions dramatically.

B. LOG
In this section, we assume that the system is partially
observable and we have the observation y; = Cux; + sq,

where C' = [1,0,0;0,1,0]. We assume that the disturbance
s¢ is normally distributed with zero mean. We design the state
estimator and controller

Ti41 = ATy + Bug + L(y, — Ciy),

Uy = Kfit

where the controller is selected the same as that in LQR and
the observer is selected as L = [0.21,0.01;0.01, 0.32;0, 2.32].
We set g = [1;1;1], £o = [0;0;0]. The simulation results
for LQG are presented in Fig. 4. Similarly, we denote by fy
the distribution of the approximated random return GXL(z)
in (20) obtained based on N random variables. We use the
Monte Carlo (MC) method with sufficiently many data to
construct an empirical distribution that serves as the baseline
distribution for comparison. As shown in Fig. 4, when v = 0.6,
we need N = 8 number of random variables to obtain a
good approximation of the return distribution. When v = 0.8,
a greater number N = 17 is needed to achieve reliable
approximation of the return distribution.

VI. CONCLUSIONS

We have proposed a new distributional approach to the
classic discounted LQR problem. Specifically, we have first
provided an analytic expression for the exact random return

-3
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(a) v = 0.6. (b) vy =0.8.

Fig. 4: Return distribution and its approximation with finite
number of random variables for different values of v in LQG.
MC denotes the distribution estimated using the Monte Carlo
method and fx denotes the distribution of the approximated
random return GX%(z).

that depends on infinitely many random variables. In this
context, we have shown that the variance remains bounded if
the fourth moment of the disturbance is bounded. Furthermore,
we have conducted an analysis of distribution sensitivity.
Besides, we have proposed a model-free method for evalu-
ating the return distribution, with theoretical analysis of its
sample complexity. Since the computation of this expression
is difficult in practice, we have also proposed an approximate
expression for the distribution of the random return that only
depends on a finite number of random variables, and have
further characterised the approximation error. Moreover, we
have extended most of the above results for LQR to the
partially observable case.

This work provides a framework for distributional LQR: it
inherits the advantages of DRL methods compared to standard
RL ones that rely on the expected return to evaluate a given
policy, but it also provides an analytic expression for the
return distribution, an aspect where current DRL methods
significantly lack. Our framework provides richer information
for linear control systems, i.e., the whole distribution of
the random return, and enables us to consider more general
objectives, e.g., risk-averse control. Future research includes
exploring policy improvement for risk-averse control using the
learned return distribution.

APPENDIX
A. Proof of Theorem 2
By virtue of Jensen’s Inequality, we have E2[[|w|*] <
E[||we|*] and E2[|jwy|]] < E[||wk|/?]. Therefore, we have
E[||lwi||?’] < o2 and E[||lwk]]] < o4. Since (a4 b+ ¢+ d)2 <
4(a® + b + % + d?), we have

E[GK(z)GK(x)]

<4E [(:cTPx)Q + (Yl Puy)”
k=0

+ (2 Z 'yk+1wgPA];<+1:r)2
k=0
e’} k—

1
+ (QZq“lwgPZA’;;TwT)Q] (22)
k=1 T

=0



We handle the terms one by one. The first term can be easily For the fourth term, by virtue of the Cauchy Product, we
bounded by have
4 2 >
(" P2)® < [l]* || P (23) E[(23 7w PZA w)’]
) k=1 =
By virtue of the Cauchy Product that (Z;O:O ak) = B E[(?i k42, PZ AT )2}
ZZOZO Zf:o ajax_g, the second term can be bounded by B k:O’Y k+1 = K T
o [e'S) k l
St B[S
k—0 k=0 =0 7=0
00 k—1
<E[(3 7wl 1P1)’] Xl POY AR ) . 26)
k=0 7=0
oo k . Al+1 T
_ ||P||2E[Z’Yk+22||wz||2 Hwk—ZHQ} ;det I3 e k_—l . wz+1 (ZT 0 wr) X
prs — wi_ P A% Tw,). Recall that the random
0o k variables wy, are independent from each other and E[wy] =0
= ||P|? 27k+2 ZE{HWW Hwk—lHQ} for all k& € N. It yields that when [ > k — [, E[¢§] = 0, and
=0 —o when | < k — [, E[{] = 0. Thus, (26) can be simplified to be

with the items when k = 2/, i.e.,

<P Y A (k + D)ot o
- B[ 3P k)]
2 _
=ai|P| -2 (24) k*{)o L 0 l
:4]E[ P> ATy,
The first inequality holds since kawk > () The ;;) g i+l TZO K Twr)
second mequahty holds since Elllw|® |wei])?] = el
E[||w > ] [[|wr— zH ] < 04 when | # k — I and xwl P ATy, )}
k—Il+1 K T
E(flwill* [lwe—ilI*] = Efflw]"] < ]:fi‘ when | = k — 1. ;)
The last equality holds since > po v*"2(k + 1) = e )
= - - 2
For the third term, we have = 4]E[Z 24 (w Z AL }
1=0
> 2
E[ 2 ki T pAktly 2} -
(2 P < 4[P? Y4 ]| ZAlH A ]
ok 1=0
2
= 4E{ 7”1wlTPAl,jlm’“—”le,lPA’;gl“x} P ! .
e AP R SR |5 A T |
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§4||P||2||33||2E{ V2Nl | AR lwe—] 2 o l -
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i~ k x (ZAajl*TwT)}
2112
< 4IPI 2l® 3o () 2 S E ) ] =0 l
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The first equality follows from the Cauchy Product. The first = 4P| o2 Z y2lHe ZE{ TA =T « Aé}H_TwT)}
1nequahty follows from wlPAYx < ||P||||A%|| [Jwi]| |||

and wl ,PAL 1y < ||P| HA’c l“H lwe—i] || The sec- PP o2 SOy 2 )

ond inequality holds since ||Ak | < lAx|" < P The 1P| o 27 Z {HU}T” }

third inequality holds since E[||wl|| |lwi_il]] < o2 when =0

Il =k — lkfznd Il # k— gpzThe last equality holds since < 4||P|\203272l+4zp§((l+1—7)

Zk o) TR+ 1) = gE e
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e e
1=0 1=rk
4||P|* odpin
T (= pi) (1 =27)
The first inequality holds since w;4; and w, are independent
for all 7 =0,...,[. The last equality holds since w, and w,
are independent for 7 # x and E[w,] =0 forall 7 =0,.. .,
The second to last inequality holds since ZT —oP (Hl ol <
PK

Cl(gmbining (23), (24), (25), (27) and (22), we have
E[GK(a;)GK(x)

27

401 | P|* 72
(1—7)?
16 || P|* o4pir"

(1= pk)1=7)

Since E[G¥(z)] is bounded, the variance of G¥(z) is

bounded. The proof is complete.

2 2
16 ||P||” [lxll” o%v* P

4 2
< 4lJall* I PI? + oy

B. Proof of Theorem 3

Before analyzing the effect of perturbations on the return
distribution, it is necessary to investigate how perturbations
affect the solution to the Lyapunov equation. The following
lemma presents the well-known sensitivity result for LQR.

Lemma 1. [35] Let X be the unique solution of the Lyapunoy
equation X = Q + ATXA for a stable matrix A. Let X
be the unique solution of the perturbed Lyapunov equation
X = Q+ ATX A for a stable matrlx A = A+ AA. Then,

when ly > 2¢g, where lg = H 1|| L Hy=II—AT® AT,
and €y = | Al [|AA]z + 5 ||AA\ > we have
HX*XH < 2Xlpeo
F~ lg—2¢

Lemma 1 analyzes the sensitivity of the Lyapunov equation
for the canonical form of LQR. For discounted LQR, the
sensitivity analysis of the Lyapunov equation is presented in
the following lemma.

H=1®I-~A% ® AL,
ﬂ{”AAKHF If | > 2¢, we have

=2 < p-2], < HEE~
F | — 2¢

Proof. 1t directly follows from Lemma 1 and | M|,
M| < +/nl||M|,, for any matrix M € R"*"™,

Lemma 2. Let | = H 1||
€= ”AK”F HAAKHF

(28)

Back to the sensitivity of perturbations on the return distri-
bution, we define Y := G¥ (x) — G¥(x), we have

sup | (2) ~ FE(2)
= sup [B(G¥(2) < 2) ~ B(G(2) < 2)
= sup P(GE(z) < 2) —P(GE(2) + Y < 2)|

oo

= sup |P(GX(z) < z)/ P(Y = t)dt

— 00

- /_OO P(GX (z) < 2 — )PV dt‘
—sw| [ RO = () - FEG - )i

< sup ‘ /
= fmaxE[|Y1],

where fmax is an upper bound of the PDF of GK () and the
last inequality follows from the mean value theorem.
From the definition of Y, we have

Y =1) fmax|t\dt‘

(29)
E[Y| = EHxT(P — P+ Y Al (P - P
k=0
+2Z’Yk+1

k—1
+2Zyk+1wE(PZA wT—PZA w,)
k=1 =0
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b3 R ful (P -
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e k—1 k—1
+23 A HE[|wl (PY AT - Py Al w,
k=1 7=0 =0

PAIIZH):UH

B
(30)

We handle the terms in the above inequality one by one. By
virtue of the Holder’s inequality, the first term can be bounded
by

(P = P)a| < |lal* [P - P 31)
Similarly, the second term can be bounded by
(o)
Z'kaEHwE(P - P)wku
k=0
o0
<SS por <

k=0

For the third term, we have

2B |ul (PAL - PAY o
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a0l i |
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i—0 where the last inequality follows since wy and w,, 7 =
< |AAk] (k+1)pk < |AAk]| U. (34) joikl—’;:jktfl arehmdependent. By decomposing the term
¥ ¥ > we have

Define the function f(k) = (k + 1)p%, and the constant U =
max{l, 2 pg po)lroy 5o =1n(1/px ). Itis easy to verify that
the function f (k) obtains the maximum at k = 0 if pg > 1
and at k = % if pg < 1. Therefore, the last inequality
follows since f(k) < max{1, = (1 pO)/po} =U for all k >
0. Substituting (34) into (33), we have
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Combining (31), (32), (35) (38) and (30), we have -

P(GET(2) < 2) / P(Zy = t)dt
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1= C3 HP — PH + ¢4 ”AAKH s 39 = fmax [|ZT” . (42)
where Now we focus on E|Zr|. From its definition, it gives
2 2
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Substituting (39) into (29) and using (28), we have t=T+1
sup |FX (2) — FE(2)| From 441 = Agx¢ + w;, where Ax = A+ BK, we have
s - t—1
< Fnax(@a || P = P|| + & | AAK]) 2= Aler + 3 A T, 44)
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< -
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where the last inequality follows from [|M ||, < /n||M]||, +2|| Al ZAtK wr }
for any matrix M € R™*"™. The proof is complete and also =0 )
yields the expression of the constants ¢y, Cs.
< pt ol +E| ZAt T
C. Proof of Theorem 5
It follows that + 2pk [|2]| Z AT, ], (45)
7=0

sup| Fy jr (2) — Ff (2)]
z where the last inequality follows from || A% z|| < || A% | ||z]| <
<sup|FL37 (2) — FET(2)| +sup |[FXT(2) = FX(2)|. ply ||| Further, we have
z z
t—1
7=0
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Note that Ff 13; and FXT are the EDF and CDF of the
random variable G* T(x), respectively. By virtue of the

Dvoretzky—Kiefer—Wolfowitz inequality, we have < UZ H AZPTH < Ungpr < : o ’ (46)
—PK
= =0
. In(1/9)
K,T K,T
s121p [Fpy ™ (2) = F7(2)] < oM (41 where the first inequality follows from the Cauchy-Schwarz

th orobabili : 1 — &. Define th d bl inequality, the second inequality follows from E?[||wg]|] <
with probability at least 1 — 0. Define the random variable E[Hwk|\2] < 02, and the third inequality follows from

r = GK(z) - GET(2) = Y7 172 (Q + KTRK)x ||A?-N+1H < (JAx [N < ptEN+L Further,
Further, we have

2
sup [F;57 (2) = F ()]

t—1

—1-7
> A,
7=0

t—1
=E Zw;f(Aﬁ(_l_T)TA'}gl_TwT]

7=0

= sup ‘IP’{GKT(QJ) <2} -~ P{GK(z) < z}’

= sup [P{GRT (2) < 2} — P{GRT (2) + 27 < 2}



t—1

<E YA TALTT| flw, |

7=0
t—1

S 0_2 Z |‘(A1}(_1_T)TA7}{_1_T’|
=0

t—1
2(t—1— a
S D
=0 Pk

2
(47)

where the first equality follows from the fact that the random
variables w,, 7 € N, are 1.i.d. and with zero mean. The
first inequality follows from the Cauchy-Schwarz inequality
and the third inequality follows from || (ALt-m)TAtA=T | <
(AT )T ][ A% 7] < p%t_l_ﬂ. Substituting (46) and
(47) into (45), we have
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Substituting (48) into (43), we have

Elllz||”] < p% ||=]® + (48)
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Combining (40), (41), (42) and (49), it gives
sup| " (2) = F¥(2)|
<sup [Fy; " (2) = FX7 (2)] + sup |F7(2) — F¥(2)]
z z

In(1/9)
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which completes the proof.
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