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Policy Evaluation in Distributional LQR
Zifan Wang, Yulong Gao, Siyi Wang, Michael M. Zavlanos, Alessandro Abate, and Karl H. Johansson

Abstract—Distributional reinforcement learning (DRL) en-
hances the understanding of the effects of the randomness in
the environment by letting agents learn the distribution of a
random return, rather than its expected value as in standard
reinforcement learning. Meanwhile, a challenge in DRL is that
the policy evaluation typically relies on the representation of the
return distribution, which needs to be carefully designed. In this
paper, we address this challenge for the special class of DRL
problems that rely on a discounted linear quadratic regulator
(LQR), which we call distributional LQR. Specifically, we provide
a closed-form expression for the distribution of the random
return, which is applicable for all types of exogenous disturbance
as long as it is independent and identically distributed (i.i.d.).
We show that the variance of the random return is bounded
if the fourth moment of the exogenous disturbance is bounded.
Furthermore, we investigate the sensitivity of the return distri-
bution to model perturbations. While the proposed exact return
distribution consists of infinitely many random variables, we show
that this distribution can be well approximated by a finite number
of random variables. The associated approximation error can be
analytically bounded under mild assumptions. When the model is
unknown, we propose a model-free approach for estimating the
return distribution, supported by sample complexity guarantees.
Finally, we extend our approach to partially observable linear
systems. Numerical experiments are provided to illustrate the
theoretical results.

Index Terms—Distributional LQR, distributional RL, distri-
bution sensitivity, policy evaluation, partially observable system

I. INTRODUCTION

In reinforcement learning (RL), the value of implementing
a policy at a given state is captured by a value function, which
models the expected sum of returns following this prescribed
policy. Recently, [1] proposed the notion of distributional rein-
forcement learning (DRL), which learns the return distribution
of a policy from a given state, instead of only its expected
return. Compared to the scalar expected value function, the
return distribution is infinite-dimensional and contains far
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more information. It is, therefore, not surprising that a few
DRL algorithms, including C51 [1], D4PG [2], QR-DQN [3]
and SDPG [4], dramatically improve the empirical perfor-
mance in practical applications over their non-distributional
counterpart. By encompassing the entire distribution, DRL is
able to provide a comprehensive framework, for instance, for
risk-averse learning, facilitating a deeper understanding and
more effective management of uncertainties [5]–[8].

In parallel with the celebrated Bellman equation in the tra-
ditional RL, an alternative random variable (or distributional)
Bellman equation acts as the theoretical foundation of DRL. It
has been shown in [1] that the return distribution satisfies the
distributional Bellman equation and the distributional Bellman
operator is a contraction in (the maximum form of) the
Wasserstein metric between probability distributions. A natural
yet fundamental question in DRL is:

Given a policy, how to (exactly) characterise the random
return that fulfills the random variable Bellman equation?

The answer to this question provides the structural information
of the return distribution, which enables a better understanding
of the value of implementing a policy in the DRL setting.

To the best of our knowledge, this problem has received
limited attention. One of the challenges is the computational
intractability arising from the fact that the return distribution is
in an infinite-dimensional space. Approximations thus become
necessary for practical implementation - cf. categorical [1],
quantile function [3], and sample-based [4] methods. Fur-
thermore, although some recent efforts have been devoted
to applying DRL to partially observable systems [9], no
theoretical foundations, including the characterisation of the
random return, have been built for these partially observable
models.

In this paper, we solve the above problem for discrete-
time linear systems with stochastic additive disturbances.
Specifically, we characterise the random cost for the classical
discounted linear quadratic regulator (LQR) problem, which
we term distributional LQR. We investigate the fundamental
properties of the characterised random cost. Furthermore, we
explore the extension to partially observable systems and
derive fundamental properties of the characterised random
cost.

A. Related Work

The problem under investigation falls within the domain of
policy evaluation in DRL, specifically focusing on predicting
the full probability distribution. This task poses a unique chal-
lenge because the full probability distribution is infinitely di-
mensional, necessitating the use of distribution parametrization
techniques to render it computationally feasible. Bellemare



2

et al. [1] propose a categorical method that discretizes the
return distribution by partitioning the return distribution into
a finite number of uniformly spaced atoms in a fixed region.
Subsequent work [10] delves into the convergence analysis of
categorical policy evaluation and shows that the distributional
projected Bellman operator with categorical representation is
a contraction with respect to the Cramér distance metric. One
drawback of the categorical representation is that it relies on
prior knowledge of the range of the returned values. To address
this limitation, [3] proposes a quantile temporal-difference
learning algorithm that learns the quantiles of a probability
distribution, and its convergence property is established in
[11] using the Wasserstein-∞ metric. However, most of the
existing algorithms and analysis of DRL are tailored to ad-
dress problems with discrete state spaces, which cannot be
applied to the linear quadratic control problem with continuous
state space. It is worth mentioning that the works [4], [12]
investigate DRL with continuous state space and use a repa-
rameterization method to represent the distribution of random
variables through a neural network. Despite these significant
advancements, there is no theoretical guarantee regarding the
quality of the learned distributions in [4], [12]. It still remains
an open problem to derive an analytical expression for the
return distribution with continuous state space. A challenge
that further complicates the problem is represented by the
infinitely many decision choices of states.

A related research line is the recent study of RL in the LQR
context, which focuses on learning the expected return through
interaction with the environment, see [13]–[19]. For example,
[15] proposes a model-free policy gradient algorithm for
LQR and shows its global convergence with finite polynomial
computational and sample complexity. Moreover, [19] studies
model-based RL for the linear quadratic Gaussian (LQG)
problem, in which a model is first learnt from data and then
used to design a policy. In this setup, evaluating the expected
return for a policy is easily computed from the Riccati
equation, but these methods are not capable of characterising
other aspects of distributional information. Works exploring
the distributional information include risk-averse control [20]–
[27] or distributional robust control [28]–[31]. However, these
methods cannot analyse the return distribution.

B. Contributions
This paper aims at studying the return distribution for linear

quadratic control problems.
1) We provide an analytical expression of the random

return for distributional LQR and prove that this return
function is a fixed-point solution to the random variable
Bellman equation (Theorem 1). Specifically, we show
that the proposed analytical expression consists of in-
finitely many random variables and holds for arbitrary
i.i.d. exogenous disturbances, e.g., non-Gaussian noise
or noise with non-zero mean. This characterisation can
recover the expected cost, complementing the classical
LQR. We remark that the random return naturally con-
tains more information than the expected cost and can
thus be particularly useful for policy evaluation in a risk-
averse setup [32].

2) We analyse the variance of the random return and
show that it is bounded if the fourth moment of the
disturbances is bounded (Theorems 2). Furthermore,
we investigate the distributional sensitivity with respect
to model perturbations. Under mild assumptions, we
show that the maximal difference between the exact and
perturbed return distributions can be bounded by the
extent of model perturbations (Theorem 3).

3) We develop an approximation of the distribution of
the random return using a finite number of random
variables when the model is known. We show that the
maximal difference between the exact and approximated
return distributions decreases linearly with the number
of random variables (Theorem 4). In the model-free
case, we approximate the return distribution using state
trajectories. We show that, with high confidence, the
distribution approximation error deceases linearly with
respect to the trajectory length and sub-linearly with
respect to the number of trajectories (Theorem 5).

4) Finally, we derive analytical evidence that most results
for distributional LQR have corresponding counterparts
for partially observable systems, including exact charac-
terisation of the random return, variance bound, distribu-
tional sensitivity under perturbations, and distributional
approximation using a finite number of random variables
(Corollaries 1–4). These extensions build on the aug-
mented system introduced by a given linear feedback
controller and a linear observer, aligning with the well-
known separation principle [33]. These results provide
insight into extending DRL to partially observable sys-
tems.

The work that comes closest to addressing the problems
above is our prior work [32]: the current contribution addi-
tionally analyses the variance of the random return and the
distributional sensitivity with respect to model perturbations.
Moreover, this work constructs a confidence bound on the dis-
tribution approximation error for the model-free case when the
system matrices are unknown. Additionally, we newly derive
corresponding counterparts for partially observable models.

C. Organisation and Notations

The paper is organized as follows. In Section II, we provide
background on LQR and define our problem. In Section III,
we provide the main results for distributional LQR, including
the analytical expression of the random return, variance bound,
distributional sensitivity under perturbations and model-based
and model-free distribution approximations. Section IV pro-
vides the main results for partially observable linear systems.
In Section V, we experimentally verify our theoretical results.
Finally, we conclude the paper in Section VI.

We denote by R the set of real numbers and N the set of
natural numbers. For a symmetric matrix P , the notation P >
0 means that P is positive definite. For a matrix Q ∈ Rn×n,
we denote by ∥Q∥ and ∥Q∥F its spectral norm and Frobenius
norm, respectively. To indicate that two random variables Z1

and Z2 are equal in distribution, we use the notation Z1
D
=Z2.

For a random variable Z, E[Z] denotes its expectation.
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II. PROBLEM STATEMENT

Consider a discrete-time linear control system:

xt+1 = Axt +But + vt,

where xt ∈ Rn, ut ∈ Rp, and vt ∈ Rn are the system state,
control input, and the exogenous disturbance, respectively.
We assume that the exogenous disturbances vt with bounded
moments, t ∈ N, are i.i.d. sampled from a distribution D of
arbitrary form.

A. Classical Discounted LQR

The canonical LQR problem aims to find a control policy
π : Rn → Rp to minimise the objective

J(u) = E

[ ∞∑
t=0

γt(xT
t Qxt + uT

t Rut)

]
,

where Q,R are positive-definite constant matrices and γ ∈
(0, 1) is a discount parameter. Given a control policy π,
let V π(x) = E

[∑∞
t=0 γ

k(xT
t Qxt + uT

t Rut)
]

denote the ex-
pected return from an initial state x0 = x with ut = π(xt).
For the static linear policy π(xt) = Kxt, the value function
V π(x) satisfies the Bellman equation

V π(x) = xT(Q+KTRK)x+ γ E
x′=(A+BK)x+v0

[V π(x′)],

(1)

where the capital letter x′ denotes a random variable over
which we take the expectation.

When the exogenous disturbance vt is normally distributed
with zero mean, the value function is known to take the
quadratic form V π(x) = xTPx + q, where P > 0 is the
solution of the Lyapunov equation P = Q + KTRK +
γAT

KPAK and q is a scalar related to the variance of vt. In
particular, the optimal control feedback gain is K∗ = −γ(R+
γBTPB)−1BTPA and P is the solution to the Riccati equa-
tion P = γATPA− γ2ATPB(R+ γBTPB)−1BTPA+Q.

B. Distributional LQR

Motivated by the advantages of DRL in better understanding
the effects of the randomness in the environment and in
considering more general optimality criteria, in this paper we
propose a distributional approach to the LQR problem. Unlike
classical RL, which relies on expected returns, DRL [34] relies
on the distribution of random returns, which is referred to
return distribution. The return distribution characterises the
probability distribution of different returns generated by a
given policy and, as such, it contains much richer information
on the performance of a given policy compared to the expected
return. In the context of LQR, we denote by Gπ(x) the random
return using the static control strategy ut = π(xt) from the
initial state x0 = x, which is defined as

Gπ(x) =

∞∑
t=0

γt(xT
t Qxt + uT

t Rut),

ut = π(xt), x0 = x. (2)

It is straightforward to see that the expectation of Gπ(x) is
equal to the value function V π(x). The standard Bellman
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Fig. 1: The PDFs of three types of disturbance and of their
corresponding random costs in LQR. The PDFs of the random
costs are generated by Algorithm 1 in this paper.

equation in (1) decomposes the long-term expected return into
an immediate stage cost plus the expected return of future
actions starting at the next step. Similarly, we can define the
random variable Bellman equation for the random return as

Gπ(x)
D
=xTQx+ π(x)TRπ(x) + γGπ(x′),

x′ = Ax+Bπ(x) + v0. (3)

Here we use the notation Z1
D
=Z2 to denote that two random

variables Z1, Z2 are equal in distribution. Compared to the
expected return in LQR, which is a scalar, here the return
distribution is infinite-dimensional.

The following example is used to highlight the need of
considering the random return.

Example 1. Consider the discrete-time scalar linear system
xt+1 = xt + ut + vt and three different types of distur-
bance vt: normal distribution N (0, 1), uniform distribution
U [−

√
3,
√
3], and multimodal distribution which is charac-

terised by the probability density function (PDF) (p1(z) +

p2(z))/2, where pi(z) =
1√
2πσi

exp
(
− (z−µi)

2

2σ2
i

)
, i = 1, 2, with

µ1 = −0.99, µ2 = 0.99, σ1 = σ2 =
√
1− 0.992. Their PDFs

are shown in Fig. 1(a). It can be verified that the mean of vt is
zero and the variance is 1 for all three types of disturbance. We
set the initial state x = 3, Q = R = 1, and γ = 0.6. Then, the
optimal controller for the three disturbances is the same and
given by ut = −0.4684xt. The value function V π(x) in (1) of
implementing the optimal controller for the three disturbances
is the same as well since the variance of vt is the same.

However, the distribution of the random return Gπ(x) varies
significantly for the three disturbances, as shown in Fig. 1(b).
We observe that the distributions of the random cost for
the Gaussian and uniform disturbances are close to chi-
square distributions, but the distribution for the multimodal
disturbance exhibits multiple peaks. Hence, the distribution of
the random return contains more information than in the LQR
problem, offering insights into risk analysis, which the mean
value alone cannot capture: the random return Gπ(x) enables
us, for instance, to select policies that minimize risks or satisfy
probabilistic constraints, which is not possible to do from the
value function V π(x).
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This paper addresses the following research problems. We
first analytically characterise the random return that fulfils the
random variable Bellman equation for LQR. Subsequently,
we explore the fundamental properties of the random return
and its distribution: variance bound, distributional sensitivity
under perturbations, and model-based and model-free distri-
bution approximations. Finally, we extend our investigation to
encompass partially observable linear systems.

III. MAIN RESULTS ON DISTRIBUTIONAL LQR

This section focuses on the random return for the LQR
problem.

A. Characterisation of the Random Return

In this section, we precisely characterise the distribution
of the random return that satisfies the distributional Bellman
equation (3). Given a static linear policy π(xt) = Kxt, we
denote by GK(x) the random return Gπ(x) under the policy
π(xt) from the initial state x0 = x , which is defined as

GK(x) =

∞∑
t=0

γtxT
t (Q+KTRK)xt, x0 = x. (4)

The random return GK(x) satisfies the following random
variable Bellman equation

GK(x)
D
=xTQKx+ γGK(x′), x′ = AKx+ v0, (5)

where AK := A + BK and QK := Q + KTRK. In the
following theorem, we provide an explicit expression of the
random return GK(x). The proof can be found in [32].

Theorem 1. [32] Suppose that the feedback gain K is
stabilizing and satisfies ∥AK∥ = ρK < 1. Let

GK(x) = xTPx+ 2

∞∑
k=0

γk+1wT
k PAk+1

K x

+

∞∑
k=0

γk+1wT
k Pwk + 2

∞∑
k=1

γk+1wT
k P

k−1∑
τ=0

Ak−τ
K wτ , (6)

where P is obtained from the Lyapunov equation P = Q +
KTRK + γAT

KPAK , and the random variables wk ∼ D are
independent from each other for all k ∈ N. Then, the random
variable GK(x) defined in (6) is a fixed point solution to the
random variable Bellman equation (5).

We note that the expression of the random return is mean-
ingful only when the system is stable. When ensuring stability,
this analytical expression applies to arbitrary exogenous dis-
turbances including non-Gaussian, uniform noises and noises
with non-zero means, as long as the disturbances are i.i.d..
For each realization of the sequence {wk}∞k=0, GK(x) is
represented as an infinite series, which is convergent when
these wk are bounded.

Remark 1. It is worth mentioning that Theorem 1 holds for
a random initial state as long as it is independent of the
process noise. That is, when x is random and is independent
of the exogenous noise vt in the system, the random return

GK(x) has the same expression as in Theorem 1. To maintain
consistency in our subsequent results, where the upper bounds
depend on the initial state x, we present the results for a fixed
initial state.

If we assume E[wk] = 0, E[wkw
T
k ] = σ2I , and the

disturbances wk are i.i.d., we have that the expected value
of the random return is xTPx + σ2 γ

1−γTr(P ), which aligns
with the classical result in LQR. This observation to some
degree validates our characterisation of the random return.

Remark 2. Recall that the PDF of the sum of two independent
random variables is the convolution of their two PDFs.
Computing the accurate probability distribution function of
GK(x) in (6) is a challenging task due to the potential need for
an infinite number of convolution operations. However, we can
discuss the approximate shape of this distribution under differ-
ent conditions. Suppose that the random variable wk follows
a normal distribution. When the initial state is significantly
large, the random variable

∑∞
k=0 γ

k+1wT
k PAk+1

K x dominates
the random return. This sum follows a Gaussian distribution,
and as a result, the overall distribution of GK(x) tends to
resemble a Gaussian distribution. Conversely, when the value
of x is small, the term

∑∞
k=0 γ

k+1wT
k Pwk becomes dominant.

This sum follows a chi-square distribution, and consequently,
the entire distribution of GK(x) takes on a chi-square-like
shape. More details can be found in Section V.

B. Bounded Variance of the Random Return

In this section, we analyse the variance of the random return
GK(x), which is presented in the following theorem. The
proof can be found in Appendix A.

Theorem 2. Assume that E[wk] = 0 and E[∥wk∥4] ≤ σ4
4 ,

for all k ∈ N. Suppose that the feedback gain K satisfies
∥AK∥ = ρK < 1. Then, the variance of the random variable
GK(x) is bounded.

Although GK(x) in (6) is composed of infinitely many ran-
dom variables, Theorem 2 shows that its variance is bounded
if the fourth moment of the disturbance is bounded. The
fourth moment qualitatively is a measure of the tail of a
probability distribution. To ensure a finite variance for the
random cost GK(x), we thus require that the tail of the
disturbance distribution is not heavy. This condition seems
indispensable, since GK(x) includes a term wT

k Pwk.

C. Sensitivity Analysis of the Return Distribution

In this section, we investigate how perturbations on matrices
influence the distribution of the random return GK(x). Sup-
pose that we perturb the matrices A,B by an amount ∆A,
∆B, respectively. Let

Ã = A+∆A, B̃ = B +∆B, AK = A+BK,

ÃK = Ã+ B̃K, ∆AK = ÃK −AK ,

and let P and P̃ be the solutions to

P −Q−KTRK = γAT
KPAK ,

P̃ −Q−KTRK = γÃT
K P̃ ÃK ,
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respectively. With the introduction of perturbations on matri-
ces, we define the perturbed random variable

G̃K(x) = xTP̃ x+ 2

∞∑
k=0

γk+1wT
k P̃ Ãk+1

K x

+

∞∑
k=0

γk+1wT
k P̃wk + 2

∞∑
k=1

γk+1wT
k P̃

k−1∑
τ=0

Ãk−τ
K wτ . (7)

Let FK
x and F̃K

x denote the cumulative distribution function
(CDF) of GK(x) and G̃K(x), respectively. In the following
theorem, we show that the sup difference between FK

x and
F̃K
x is bounded when the perturbation is reasonably small.

The proof can be found in Appendix B.

Theorem 3. Assume that the PDF of wk is bounded, and
satisfies E[wT

k wk] ≤ σ2, for all k ∈ N. Suppose that the
feedback gain K satisfies max{

∥∥AK

∥∥,∥∥ÃK

∥∥} = ρK < 1.
Suppose that l > 2ϵ, where l =

∥∥H−1
∥∥−1

, H = I ⊗ I −
γAT

K⊗AT
K and ϵ = γ ∥AK∥F ∥∆AK∥F + γ

2 ∥∆AK∥2F . Then,
we have

sup
z

|FK
x (z)− F̃K

x (z)| ≤ c̃1 ∥∆AK∥+ c̃2 ∥∆AK∥2 , (8)

where the constants c̃1, c̃2 (made explicit in the proof) depend
on the system matrices, the initial state value x, and the
parameters γ, ρK , σ.

Traditional sensitivity analysis investigates the impact of
perturbations on solutions to the Lyapunov equation, see, e.g.,
[35]. Building on this result, Theorem 3 shows that we can
also bound changes in the perturbed return distribution.

D. Model-Based Approximation of the Return Distribution

The expression of the random return GK(x) defined in
(6) is composed of infinitely many random variables. In this
section, we investigate how to approximate the distribution of
this random return using a finite number of random variables.
A natural idea is to consider only the first N terms in the
summations in the expression (6) and disregard the terms for
k larger than N , which yields the following:

GK
N (x) = xTPx+ 2

N−1∑
k=0

γk+1wT
k PAk+1

K x

+

N−1∑
k=0

γk+1wT
k Pwk + 2

N−1∑
k=1

γk+1wT
k P

k−1∑
τ=0

Ak−τ
K wτ . (9)

Let FK
x,N denote the CDF of GK

N (x). The following theorem
provides an upper bound on the difference between FK

x and
FK
x,N , and shows that the sequence {GK

N (x)}N∈N converges
pointwise in distribution to GK(x), ∀x ∈ Rn. The proof can
be found in [32].

Theorem 4. [32] Assume that the PDF of wk is bounded,
and satisfies E[wT

k wk] ≤ σ2, for all k ∈ N. Suppose that the
feedback gain K satisfies ∥AK∥ = ρK < 1. Then, the sup
difference between the CDFs FK

x and FK
x,N is bounded by

sup
z

|FK
x (z)− FK

x,N (z)| ≤ c0γ
N , (10)

Algorithm 1: Model-free Distributional Policy Evalu-
ation
Require: initial values x, controller K

1: for iteration m = 1, . . . ,M do
2: Initial state xm,0 = x;
3: for time t = 0, 1, . . . , T − 1 do
4: Implement controller um,t = Kxm,t;
5: Observe xm,t+1 = Axm,t +Bum,t + vt;
6: end for
7: Obtain GK,T

m (x) =
T∑

t=0
γtxT

m,t(Q+KTRK)xm,t;

8: end for
9: Construct EDF F̂K,T

x,M (z) = 1
M

M∑
m=1

1{GK,T
m (x) ≤ z}.

where c0 is a constant (again, made explicit in the proof) that
depends on the system matrices, the initial state value x, and
the parameters γ, ρK , σ.

Remark 3. The bound on the distribution approximation in
(10) relies on the conditions of Theorem 4, which ensure
that the PDF of GK

N is continuous and bounded. Note that
these conditions are not strict, and indeed hold for many
noise distributions commonly used in linear control systems,
including the Gaussian and uniform ones.

E. Model-Free Approximation of the Return Distribution

When the matrices A,B are unknown, one cannot use the
exact form of the random return to compute the distribution.
In this section, we propose a model-free method to estimate
the distribution of the random return.

In the absence of information about the system matrices A
and B, one costly yet straightforward approach to estimate the
distribution is by directly sampling the random return GK(x)
as defined in (4). This random return represents the sum of
discounted rewards over an infinite time horizon. To make
the computation practically manageable, we truncate the time
horizon and disregard rewards occurring after time step T .
Accordingly, we define the random variable

GK,T (x) =

T∑
t=0

γtxT
t (Q+KTRK)xt, x0 = x. (11)

We denote by FK,T
x (z) the CDF of GK,T (x) and recall that

FK
x (z) is the CDF of GK(x). Intuitively, FK,T

x (z) closely
approximates FK

x (z) when T is sufficiently large. This is
due to the fact that every term beyond time step T becomes
negligible after being discounted by γt. Therefore, we sample
the random return GK,T (x) to estimate the distribution of
GK(x).

The detailed model-free distributional policy evaluation is
presented in Algorithm 1. Specifically, at each iteration m,
starting from the initial state xm,0 = x, we repeatedly
implement the static controller um,t = Kxm,t and generate a
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total of M trajectories. Given the m-th trajectory {xm,t}t=0:T

with xm,0 = x, define the sampling cost

GK,T
m (x) =

T∑
t=0

γtxT
m,t(Q+KTRK)xm,t. (12)

Using GK,T
m (x), m = 1, . . . ,M , the empirical distribution

function (EDF) is constructed by

F̂K,T
x,M (z) =

1

M

M∑
m=1

1{GK,T
m (x) ≤ z}, (13)

where 1{·} denotes the indicator function. Intuitively, the
empirical distribution F̂K,T

x,M (z) is close to the distribution
FK,T
x (z) when M is sufficiently large and to the distribution

FK
x (z) when T is also large. The following theorem provides

an upper bound on the difference between the distributions
F̂K,T
x,M (z) and FK

x (z). The proof can be found in Appendix C.

Theorem 5. Assume that the PDF of wk is bounded, and
satisfies E[wk] = 0 and E[wT

k wk] ≤ σ2, for all k ∈ N.
Suppose that the feedback gain K satisfies ∥AK∥ = ρK < 1.
Then, with probability at least 1− δ, we have

sup
z

|F̂K,T
x,M (z)− FK

x (z)| ≤
√

ln(1/δ)

2M

+fmax ∥QK∥ γT+1(c1ρ
2(T+1)
K + c2ρ

T+1
K + c3), (14)

where fmax is the maximum of the PDF of the random
variable GK,T (x), QK = Q + KTRK, c1 = ∥x∥2

1−γρ2
K

,

c2 = 2∥x∥σ
(1−ρK)(1−γρK) , c3 = σ2

(1−γ)(1−γρK) .

Theorem 5 shows that the accuracy of the distribution
estimate depends on the choice of two key parameters: the
time horizon T and the number of generated trajectories M .
When both M and T are sufficiently large, F̂K,T

x,M (z) can
serve as a reliable approximation for FK

x (z). Supported by
this result, we consider the return distribution learned by
Algorithm 1 with sufficiently large values of M,T as the true
return distribution in the simulation part. Practically, given a
target approximation error ε, we can determine the required

values of M and T by ensuring that
√

ln(1/δ)
2M ≤ (1 − a)ε

and fmax ∥QK∥ γT+1(c1ρ
2(T+1)
K +c2ρ

T+1
K +c3) ≤ aε for any

a ∈ (0, 1).

Remark 4. We note that the random variables GK
N (x) and

GK,T (x) serve as the approximations to the true random
return GK(x) by truncating the number of random variables
and the time horizon, respectively. As shown in Theorems 4
and 5, increasing the number of random variables or extending
the truncated horizon definitely enhance the approximation
accuracy for model-based and model-free methods, respec-
tively. However, the associated costs one needs to pay to
obtain their distributions are usually different. As shown in
Table I, the model-free method requires a sufficiently large
value of M to achieve a reliable distribution estimate with
a high probability. In contrast, the model-based method can
attain the same level of accuracy with probability 1 using
a significantly smaller number of random variables. Hence,

MB method MF method MF method
γ UB N T,M(δ = 5%) T,M(δ = 1%)

0.6 0.02 11 (100,4000) (100,6000)
0.6 0.01 12 (100,15000) (100,23000)
0.8 0.02 24 (100,4000) (100,6000)
0.8 0.01 27 (100,15000) (100,23000)

0.95 0.02 112 (200,4000) (200,6000)
0.99 0.02 698 (1000,4000) (1000,6000)

TABLE I: Comparison of model-based (MB) and model-
free (MF) approximation methods. Here γ is the discount
parameter; UB is the bound in the right hand side of (10) and
(14) for model-based and model-free methods, respectively;
N is the smallest integer such that c0γN ≤ UB; and T,M(δ)
denote the pair comprising the horizon length T and the
number of trajectories M required so that the approximation
error in (14) is bounded by UB with probability at least 1−δ.

when the system matrices and the disturbances are known, the
computation of the distribution of GK

N (x) incurs less costs. It
is also worth noting that the model-free method is not sensitive
to the discount parameter γ while the model-based method is.

Remark 5. For the discounted infinite-horizon LQR problem,
the stability criterion is relaxed to requiring that

√
γ(A+BK)

is stable [36], [37]. However, when analyzing the entire return
distribution, our results indicate that we need A + BK to
be stable, i.e., ∥A+BK∥ < 1, which is a more stringent
condition. This is because the random return GK(x) includes
a term 2

∑∞
k=1 γ

k+1wT
k P

∑k−1
τ=0 A

k−τ
K wτ , necessitating that

Ak−τ
K remains bounded to ensure the convergence of the series.

This issue does not arise in the expected return case, since the
term involving the process noise disappears when taking the
expectation, due to the zero mean of wk.

IV. EXTENSION TO PARTIALLY OBSERVABLE SYSTEMS

In this section, we analyse the case when the state is not
fully observable. We show that most of the results for LQR
can be extended to this partially observable case.

Consider a partially observable discrete-time linear control
system:

xt+1 = Axt +But + vt,

yt = Cxt + st,

where xt ∈ Rn, ut ∈ Rp, yt ∈ Rl, vt ∈ Rn, and st ∈ Rl are
the system state, control input, system output, process noise,
and observation noise, respectively. We assume that the system
is observable and controllable. By introducing the feedback
gain K and the observer gain L, we define the estimated state
and controller

x̂t+1 = Ax̂t +But + L(yt − Cx̂t),

ut = Kx̂t.

By defining x̃t = xt − x̂t, x̄t = [xT
t , x̃

T
t ]

T, we get the
augmented system

x̄t+1 = ĀKLx̄t + v̄t, (15)
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where

ĀKL =

[
A+BK −BK

0 A− LC

]
, v̄t = F

[
vt
st

]
,

F =

[
I 0
I −L

]
.

If E[vt] = E[st] = 0, and the collection of vt and st is i.i.d.,
it is easy to verify that E[v̄t] = 0 and the collection of v̄t is
i.i.d.. We denote the distribution of v̄t by D̄. Define Q̄K :=[

Q+KTRK −KTRK
−KTRK KTRK

]
and the random return

GKL(x̄) =

∞∑
t=0

γt(xT
t Qxt + uT

t Rut)

=

∞∑
t=0

γt(xT
t Qxt + x̂T

t K
TRKx̂t)

=
∞∑
t=0

γtx̄T
t Q̄K x̄t, x̄0 = x̄, (16)

where x̄ = [xT, x̃T
0 ]

T. The random return GKL(x̄) satisfies
the following random variable Bellman equation

GKL(x̄)
D
= x̄TQ̄K x̄+ γGKL(X ′), X ′ = ĀKLx̄+ v̄0.

(17)

In the following corollary, we provide an explicit expression
of the random return GKL(x̄). The proof can be obtained by
applying the results in Theorem 1 to the augmented system
(15) and is omitted.

Corollary 1. Suppose that the feedback gain K and observer
gain L are chosen such that

∥∥ĀKL

∥∥ = ρ̄K < 1. Let

GKL(x̄) = x̄TP̄ x̄+ 2

∞∑
k=0

γk+1w̄T
k P̄ Āk+1

KL x̄

+

∞∑
k=0

γk+1w̄T
k P̄ w̄k + 2

∞∑
k=1

γk+1w̄T
k P̄

k−1∑
τ=0

Āk−τ
KL w̄τ , (18)

where P̄ is obtained from the Lyapunov equation P̄ =
Q̄K + γĀT

KLP̄ ĀKL, and the random variables w̄k ∼ D̄ are
independent from each other for all k ∈ N. Then, the random
variable GKL(x) defined in (16) is a fixed point solution to
the random variable Bellman equation (17).

The variance bound part is similar to that of the fully
observable case, and is presented in the following corollary.
The proof can be obtained by following a similar methodology
to that employed for Theorem 2 and is omitted.

Corollary 2. Assume that E[w̄k] = 0 and E[∥w̄k∥4] ≤ σ̄4, for
all k ∈ N. Suppose that the feedback gain K and observer
gain L are chosen such that

∥∥ĀKL

∥∥ = ρ̄K < 1. Then, the
variance of the random variable GKL(x) is bounded.

The sensitivity analysis for the partially observable case is
similar to that of the fully observable case. Suppose that we
perturb the matrix ĀKL by an amount ∆ĀKL. Define the

matrix ǍKL = ĀKL + ∆ĀKL and the perturbed random
variable

G̃KL(x̄) = x̄TP̌ x̄+ 2

∞∑
k=0

γk+1w̄T
k P̌ Ǎk+1

K x

+

∞∑
k=0

γk+1w̄T
k P̌ w̄k + 2

∞∑
k=1

γk+1w̄T
k P̌

k−1∑
τ=0

Ǎk−τ
K w̄τ . (19)

where P̌ = Q̄K + γǍT
KLP̌ ǍKL. Let FKL

x and F̃KL
x denote

the CDF of GKL(x) and G̃KL(x), respectively. We obtain
the perturbation for partially observable case in the following
corollary. The proof can be adapted from that of Theorem 3
and is omitted.

Corollary 3. Assume that the PDF of w̄k is bounded, and
satisfy E[w̄T

k w̄k] ≤ σ̄2, for all k ∈ N. Suppose that the
feedback gain K and the observer L are chosen such that
max{

∥∥ĀKL

∥∥ ,∥∥ǍKL

∥∥} = ρ̄K < 1. Suppose that l̄ > 2ϵ̄,
where l̄ =

∥∥H̄−1
∥∥−1

, H̄ = I ⊗ I − γĀT
KL ⊗ ĀT

KL and
ϵ̄ = γ

∥∥ĀKL

∥∥
F

∥∥∆ĀKL

∥∥
F
+ γ

2

∥∥∆ĀKL

∥∥2
F

. Then, we have

sup
z

|FKL
x (z)− F̃KL

x (z)| ≤ c̄1
∥∥∆ĀKL

∥∥+ c̄2
∥∥∆ĀKL

∥∥2 ,
where the constants c̄1, c̄2 depend on the system matrices, the
initial state value x̄, and the parameters γ, ρ̄K , σ̄.

The approximation part is similar to that of the fully
observable case. Let

GKL
N (x̄) = x̄TP̄ x̄+ 2

N∑
k=0

γk+1w̄T
k P̄ Āk+1

KL x̄

+

N∑
k=0

γk+1w̄T
k P̄ w̄k + 2

N∑
k=1

γk+1w̄T
k P̄

k−1∑
τ=0

Āk−τ
KL w̄τ . (20)

Let FKL
x and FKL

x,N denote the CDF of GKL(x) and GKL
N (x),

respectively. In the following theorem, we show that the
approximation error with a finite number of random variables
can be bounded in the partially observable case. The proof can
be adapted from that of Theorem 4 and is omitted.

Corollary 4. Assume that the PDF of w̄k is bounded, and
satisfy E[w̄T

k w̄k] ≤ σ̄2, for all k ∈ N. Suppose that the
feedback gain K and observer gain L are chosen such that∥∥ĀKL

∥∥ = ρ̄K < 1. Then, the sup difference between the
CDFs FKL

x and FKL
x,N is bounded by

sup
z

|FKL
x (z)− FKL

x,N (z)| ≤ c̄0γ
N , (21)

where c̄0 is a constant that depends on the system matrices,
the initial state value x̄, and the parameters γ, ρ̄K , σ̄.

We remark that the model-free approximation (Theorem 5)
is not applicable for partially observable systems. Unlike the
distributional LQR where the state is directly measurable, it
is nontrivial to achieve an accurate estimation of the states
such that the cumulative estimation error can be controlled
arbitrarily small using only the observation sequence {yt} and
control sequence {ut} (when the system model is unknown).
Thus, we leave this problem for future work.
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V. EXPERIMENTS

In this section, we consider an idealised example of data
center cooling with three sources coupled to their own cooling
devices [13], [18], [38] with the dynamics xt+1 = Axt+But+
vt, where

A =

 1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

 , B =

 1 0 0
0 1 0
0 0 1

 .

We select Q = I and R = I . The exogenous disturbances
have standard normal distributions with zero mean.

Even for this linear system, it is impossible to simplify
the expression of the exact return distribution, which still
depends on an infinite number of random variables. Thus, as
a baseline for the return distribution, we generate an empirical
distribution by Algorithm 1 with a sufficiently large amount of
samples that approximates the true distribution of the random
return. Specifically, we run Algorithm 1 with the parameters
T = 3000 and M = 30000. By Theorem 5, the maximal
difference between the generated empirical distribution and
the true one is bounded by 0.0088 with probability at least
99%, which means that the generated empirical distribution is
reliably close to the true one. We use the sample frequency
over evenly-divided regions as an approximation of the PDF.

A. LQR

We first consider the fully observable case. We select
different values of γ and x0, and fix the optimal controller
gain K = −γ(R + γBTPB)−1PA, where P is the solution
to the classic Riccati equation P = γATPA−γ2ATPB(R+
γBTPB)−1BTPA+Q. The controller is given by

K = −0.01

 56.19 0.7692 0.0027
0.7692 56.20 0.7692
0.0027 0.7692 56.19

 .

In what follows, we verify the results in Theorem 4 by
evaluating the quality of the approximation of the return
distribution using different numbers of random variables.
We denote here by fN the distribution of the approximated
random return GK

N (x0) in (9) obtained considering N random
variables. We compute the constant c0 in equation (10) and
the required number of random variables that guarantees
supz |FK

x (z) − FK
x,N (z)| ≤ 0.01, meaning that the estimate

distribution is sufficiently close to the true distribution. As
shown in Table II, an increasing number of random variables
is needed when dealing with larger values of γ and/or x0.
The simulation results are shown in Fig. 2. Specifically, Fig. 2
(a) and (c) show that when γ is small, the return distribution
can be well approximated using only a few random variables
(N = 7 works well). However, when γ approaches 1, more
random variables are needed for an accurate approximation:
as shown in Fig. 2 (b) and (d), we need N = 15 to have a
good approximation of the return distribution in the case of
γ = 0.8.

Moreover, the value of the initial state x0 has an influence
on the shape of the return distribution. When x0 is large, the
random variable wT

k PAk+1
K x0 dominates and, therefore, its

γ x0 c0 N0

0.6 [1;1;1] 0.5447 8
0.8 [1;1;1] 0.5917 19
0.6 [6;6;6] 1.7550 11
0.8 [6;6;6] 2.6134 25

TABLE II: Constant c0 in (10) and required number N0 to
obtain a good estimate for different values of γ and x0 in LQR,
where N0 is the smallest integer such that supz |FK

x (z) −
FK
x,N0

(z)| ≤ c0γ
N0 ≤ 0.01.
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(a) γ = 0.6, x0 = [1; 1; 1].
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(b) γ = 0.6, x0 = [6; 6; 6].
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(c) γ = 0.8, x0 = [1; 1; 1].
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(d) γ = 0.8, x0 = [6; 6; 6].
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(e) γ = 0.95, x0 = [1; 1; 1].
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(f) γ = 0.95, x0 = [6; 6; 6].

Fig. 2: Return distribution and its approximation with finite
number of random variables for different values of γ and x0 in
LQR. Alg. 1 denotes the distribution returned by Algorithm 1
and fN denotes the distribution of the approximated random
return GK

N (x0).

distribution is close to a Gaussian distribution, as shown in
Fig. 2 (c) and (d). If instead x0 is small, then the random
variable wT

k Pwk plays a leading role, so the overall distribu-
tion is close to the chi-square one, as shown in Fig. 2 (a) and
(b).

Next we perturb the matrices A, B by an amount ϵAA and
ϵBB, respectively. We select x0 = [1; 1; 1]. We compute the
constants of c̃1, c̃2, the true sup difference between original
and perturbed distributions, and the upper bounds in (8). The
results are shown in Table III. We observe that the perturbed
distribution becomes significantly distinct from the original
distribution when γ, ϵA, and ϵB take on larger values. We also
note that our computational upper bound becomes conservative



9

0 20 40 60

Values

0

0.05

0.1

0.15

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

(a) γ = 0.6.

0 50 100

Values

0

0.02

0.04

0.06

0.08

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

(b) γ = 0.8.

Fig. 3: Original and perturbed return distributions for different
values of γ, ϵA and ϵB in LQR.

γ ϵA ϵB c̃1 c̃2 Sup difference UB

0.6 0.1 0.1 6.5 4.6 0.051 0.33
0.6 0.4 0.4 20.3 11.9 0.24 0.52
0.8 0.1 0.1 12.4 9.9 0.056 0.53
0.8 0.4 0.4 30.5 20.9 0.26 0.80

TABLE III: Computation of the actual maximal difference
between the perturbed and the original distributions, and
computational upper bound (UB) for different values of γ,
ϵA and ϵB in LQR. The constants c̃1 and c̃2 are those in (8).
Sup difference is the value of supz |FK

x (z) − F̃K
x (z)| while

UB is the value of c̃1 ∥∆AK∥+ c̃2 ∥∆AK∥2.

when γ is close to 1. The perturbed return distributions for
different values of ϵA and ϵB are shown in Fig. 3. We observe
that large perturbations change the distributions dramatically.

B. LQG

In this section, we assume that the system is partially
observable and we have the observation yt = Cxt + st,
where C = [1, 0, 0; 0, 1, 0]. We assume that the disturbance
st is normally distributed with zero mean. We design the state
estimator and controller

x̂t+1 = Ax̂t +But + L(yt − Cx̂t),

ut = Kx̂t.

where the controller is selected the same as that in LQR and
the observer is selected as L = [0.21, 0.01; 0.01, 0.32; 0, 2.32].
We set x0 = [1; 1; 1], x̂0 = [0; 0; 0]. The simulation results
for LQG are presented in Fig. 4. Similarly, we denote by fN
the distribution of the approximated random return GKL

N (x̄)
in (20) obtained based on N random variables. We use the
Monte Carlo (MC) method with sufficiently many data to
construct an empirical distribution that serves as the baseline
distribution for comparison. As shown in Fig. 4, when γ = 0.6,
we need N = 8 number of random variables to obtain a
good approximation of the return distribution. When γ = 0.8,
a greater number N = 17 is needed to achieve reliable
approximation of the return distribution.

VI. CONCLUSIONS

We have proposed a new distributional approach to the
classic discounted LQR problem. Specifically, we have first
provided an analytic expression for the exact random return
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(a) γ = 0.6.
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(b) γ = 0.8.

Fig. 4: Return distribution and its approximation with finite
number of random variables for different values of γ in LQG.
MC denotes the distribution estimated using the Monte Carlo
method and fN denotes the distribution of the approximated
random return GKL

N (x̄).

that depends on infinitely many random variables. In this
context, we have shown that the variance remains bounded if
the fourth moment of the disturbance is bounded. Furthermore,
we have conducted an analysis of distribution sensitivity.
Besides, we have proposed a model-free method for evalu-
ating the return distribution, with theoretical analysis of its
sample complexity. Since the computation of this expression
is difficult in practice, we have also proposed an approximate
expression for the distribution of the random return that only
depends on a finite number of random variables, and have
further characterised the approximation error. Moreover, we
have extended most of the above results for LQR to the
partially observable case.

This work provides a framework for distributional LQR: it
inherits the advantages of DRL methods compared to standard
RL ones that rely on the expected return to evaluate a given
policy, but it also provides an analytic expression for the
return distribution, an aspect where current DRL methods
significantly lack. Our framework provides richer information
for linear control systems, i.e., the whole distribution of
the random return, and enables us to consider more general
objectives, e.g., risk-averse control. Future research includes
exploring policy improvement for risk-averse control using the
learned return distribution.

APPENDIX

A. Proof of Theorem 2

By virtue of Jensen’s Inequality, we have E2[∥wk∥2] ≤
E[∥wk∥4] and E2[∥wk∥] ≤ E[∥wk∥2]. Therefore, we have
E[∥wk∥2] ≤ σ2

4 and E[∥wk∥] ≤ σ4. Since (a+ b+ c+ d)2 ≤
4(a2 + b2 + c2 + d2), we have

E
[
GK(x)GK(x)

]
≤ 4E

[
(xTPx)2 +

( ∞∑
k=0

γk+1wT
k Pwk

)2
+

(
2

∞∑
k=0

γk+1wT
k PAk+1

K x
)2

+
(
2

∞∑
k=1

γk+1wT
k P

k−1∑
τ=0

Ak−τ
K wτ

)2]
. (22)
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We handle the terms one by one. The first term can be easily
bounded by

(xTPx)2 ≤ ∥x∥4 ∥P∥2 . (23)

By virtue of the Cauchy Product that
(∑∞

k=0 ak

)2

=∑∞
k=0

∑k
l=0 alak−l, the second term can be bounded by

E
[( ∞∑

k=0

γk+1wT
k Pwk

)2]
≤ E

[( ∞∑
k=0

γk+1 ∥wk∥2 ∥P∥
)2]

= ∥P∥2 E
[ ∞∑
k=0

γk+2
k∑

l=0

∥wl∥2 ∥wk−l∥2
]

= ∥P∥2
∞∑
k=0

γk+2
k∑

l=0

E
[
∥wl∥2 ∥wk−l∥2

]
≤ ∥P∥2

∞∑
k=0

γk+2(k + 1)σ4
4

= σ4
4 ∥P∥2 γ2

(1− γ)2
. (24)

The first inequality holds since wkPwk ≥ 0. The
second inequality holds since E[∥wl∥2 ∥wk−l∥2] =
E[∥wl∥2]E[∥wk−l∥2] ≤ σ4

4 when l ̸= k − l and
E[∥wl∥2 ∥wk−l∥2] = E[∥wl∥4] ≤ σ4

4 when l = k − l.
The last equality holds since

∑∞
k=0 γ

k+2(k + 1) = γ2

(1−γ)2 .
For the third term, we have

E
[(
2

∞∑
k=0

γk+1wT
k PAk+1

K x
)2]

= 4E
[ ∞∑
k=0

k∑
l=0

γl+1wT
l PAl+1

K xγk−l+1wT
k−lPAk−l+1

K x
]

≤ 4 ∥P∥2 ∥x∥2 E
[ ∞∑
k=0

γk+2
k∑

l=0

∥wl∥
∥∥Al+1

K

∥∥ ∥wk−l∥

×
∥∥Ak−l+1

K

∥∥ ]
≤ 4 ∥P∥2 ∥x∥2

∞∑
k=0

(γρ)k+2
k∑

l=0

E
[
∥wl∥ ∥wk−l∥

]
≤ 4 ∥P∥2 ∥x∥2 σ2

4

∞∑
k=0

(k + 1)(γρK)k+2

= 4 ∥P∥2 ∥x∥2 σ2
4

γ2ρ2K
(1− γρK)2

. (25)

The first equality follows from the Cauchy Product. The first
inequality follows from wT

l PAl
Kx ≤ ∥P∥

∥∥Al
K

∥∥ ∥wl∥ ∥x∥
and wT

k−lPAk−l+1
K x ≤ ∥P∥

∥∥Ak−l+1
K

∥∥ ∥wk−l∥ ∥x∥. The sec-
ond inequality holds since

∥∥Al
K

∥∥ ≤ ∥AK∥l ≤ ρlK . The
third inequality holds since E[∥wl∥ ∥wk−l∥] ≤ σ2

4 when
l = k − l and l ̸= k − l. The last equality holds since∑∞

k=0(γρ)
k+2(k + 1) = γ2ρ2

(1−γρ)2 .

For the fourth term, by virtue of the Cauchy Product, we
have

E
[(
2

∞∑
k=1

γk+1wT
k P

k−1∑
τ=0

Ak−τ
K wτ

)2]
= E

[(
2

∞∑
k=0

γk+2wT
k+1P

k∑
τ=0

Ak+1−τ
K wτ

)2]
= 4E

[ ∞∑
k=0

γk+4
k∑

l=0

wT
l+1P (

l∑
τ=0

Al+1−τ
K wτ )

× wT
k−l+1P (

k−l∑
τ=0

Ak−l+1−τ
K wτ )

]
. (26)

Let ξ := wT
l+1P (

∑l
τ=0 A

l+1−τ
K wτ ) ×

wT
k−l+1P (

∑k−l
τ=0 A

k−l+1−τ
K wτ ). Recall that the random

variables wk are independent from each other and E[wk] = 0
for all k ∈ N. It yields that when l > k − l, E[ξ] = 0, and
when l < k − l, E[ξ] = 0. Thus, (26) can be simplified to be
with the items when k = 2l, i.e.,

E
[(
2

∞∑
k=1

γk+1wT
k P

k−1∑
τ=0

Ak−τ
K wτ

)2]
= 4E

[ ∞∑
k=0

γk+4
k∑

l=0

wT
l+1P (

l∑
τ=0

Al+1−τ
K wτ )

× wT
k−l+1P (

k−l∑
τ=0

Ak−l+1−τ
K wτ )

]
= 4E

[ ∞∑
l=0

γ2l+4
(
wT

l+1P (

l∑
τ=0

Al+1−τ
K wτ )

)2]

≤ 4 ∥P∥2
∞∑
l=0

γ2l+4E
[
∥wl+1∥2

]
E
[ ∥∥∥∥∥

l∑
τ=0

Al+1−τ
K wτ

∥∥∥∥∥
2 ]

≤ 4 ∥P∥2 σ2
4

∞∑
l=0

γ2l+4E
[ ∥∥∥∥∥

l∑
τ=0

Al+1−τ
K wτ

∥∥∥∥∥
2 ]

≤ 4 ∥P∥2 σ2
4

∞∑
l=0

γ2l+4E
[( l∑

τ=0

wT
τ (A

l+1−τ
K )T

)
×

( l∑
τ=0

Al+1−τ
K wτ

)]
= 4 ∥P∥2 σ2

4E
[ ∞∑

l=0

γ2l+4
l∑

τ=0

l∑
κ=0

(
wT

τ (A
l+1−τ
K )TAl+1−κ

K wκ

)]
= 4 ∥P∥2 σ2

4

∞∑
l=0

γ2l+4
l∑

τ=0

l∑
κ=0

E
[(
wT

τ (A
l+1−τ
K )TAl+1−κ

K wκ

)]
= 4 ∥P∥2 σ2

4

∞∑
l=0

γ2l+4
l∑

τ=0

E
[(
wT

τ (A
l+1−τ
K )T ×Al+1−τ

K wτ

)]
≤ 4 ∥P∥2 σ2

4

∞∑
l=0

γ2l+4
l∑

τ=0

ρ
2(l+1−τ)
K E

[
∥wτ∥2

]
≤ 4 ∥P∥2 σ4

4

∞∑
l=0

γ2l+4
l∑

τ=0

ρ
2(l+1−τ)
K
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≤ 4 ∥P∥2 σ4
4

∞∑
l=0

γ2l+4 ρ2K
1− ρ2K

≤ 4 ∥P∥2 σ4
4ρ

2
Kγ4

(1− ρ2K)(1− γ2)
. (27)

The first inequality holds since wl+1 and wτ are independent
for all τ = 0, . . . , l. The last equality holds since wτ and wκ

are independent for τ ̸= κ and E[wτ ] = 0 for all τ = 0, . . . , l.
The second to last inequality holds since

∑l
τ=0 ρ

2(l+1−τ)
K ≤

ρ2
K

1−ρ2
K

.
Combining (23), (24), (25), (27) and (22), we have

E
[
GK(x)GK(x)

]
≤ 4 ∥x∥4 ∥P∥2 + 4σ4

4 ∥P∥2 γ2

(1− γ)2
+

16 ∥P∥2 ∥x∥2 σ2
4γ

2ρ2K
(1− γρK)2

+
16 ∥P∥2 σ4

4ρ
2
Kγ4

(1− ρ2K)(1− γ2)
.

Since E
[
GK(x)

]
is bounded, the variance of GK(x) is

bounded. The proof is complete.

B. Proof of Theorem 3

Before analyzing the effect of perturbations on the return
distribution, it is necessary to investigate how perturbations
affect the solution to the Lyapunov equation. The following
lemma presents the well-known sensitivity result for LQR.

Lemma 1. [35] Let X be the unique solution of the Lyapunov
equation X = Q + ATXA for a stable matrix A. Let X̃
be the unique solution of the perturbed Lyapunov equation
X̃ = Q + ÃTX̃Ã for a stable matrix Ã = A + ∆A. Then,
when l0 > 2ϵ0, where l0 =

∥∥H−1
0

∥∥−1
, H0 = I⊗I−AT⊗AT,

and ϵ0 = ∥A∥F ∥∆A∥F + 1
2 ∥∆A∥2F , we have∥∥∥X − X̃
∥∥∥
F
≤

2 ∥X∥F ϵ0
l0 − 2ϵ0

.

Lemma 1 analyzes the sensitivity of the Lyapunov equation
for the canonical form of LQR. For discounted LQR, the
sensitivity analysis of the Lyapunov equation is presented in
the following lemma.

Lemma 2. Let l =
∥∥H−1

∥∥−1
, H = I ⊗ I − γAT

K ⊗ AT
K ,

ϵ = γ ∥AK∥F ∥∆AK∥F + γ
2 ∥∆AK∥2F . If l > 2ϵ, we have∥∥∥P − P̃

∥∥∥ ≤
∥∥∥P − P̃

∥∥∥
F
≤

2 ∥P∥F ϵ

l − 2ϵ
. (28)

Proof. It directly follows from Lemma 1 and ∥M∥2 ≤
∥M∥F ≤

√
n ∥M∥2, for any matrix M ∈ Rn×n.

Back to the sensitivity of perturbations on the return distri-
bution, we define Ỹ := GK(x)− G̃K(x), we have

sup
z

|FK
x (z)− F̃K

x (z)|

= sup
z

|P(G̃K(x) ≤ z)− P(GK(x) ≤ z)|

= sup
z

|P(G̃K(x) ≤ z)− P(G̃K(x) + Ỹ ≤ z)|

= sup
z

∣∣∣P(G̃K(x) ≤ z)

∫ ∞

−∞
P(Ỹ = t)dt

−
∫ ∞

−∞
P(G̃K(x) ≤ z − t)P(Ỹ = t)dt

∣∣∣
= sup

z

∣∣∣ ∫ ∞

−∞
P(Ỹ = t)

(
F̃K
x (z)− F̃K

x (z − t)
)
dt
∣∣∣

≤ sup
z

∣∣∣ ∫ ∞

−∞
P(Ỹ = t)f̃max|t|dt

∣∣∣
= f̃maxE

[
|Ỹ |

]
, (29)

where f̃max is an upper bound of the PDF of G̃K(x) and the
last inequality follows from the mean value theorem.

From the definition of Ỹ , we have

E|Ỹ | = E
[∣∣∣xT(P − P̃ )x+

∞∑
k=0

γk+1wT
k (P − P̃ )wk

+ 2

∞∑
k=0

γk+1wT
k (PAk+1

K − P̃ Ãk+1
K )x

+ 2

∞∑
k=1

γk+1wT
k

(
P

k−1∑
τ=0

Ak−τ
K wτ − P̃

k−1∑
τ=0

Ãk−τ
K wτ

)∣∣∣]
≤ |xT(P̃ − P )x|+

∞∑
k=0

γk+1E
[∣∣∣wT

k (P̃ − P )wk

∣∣∣]
+ 2

∞∑
k=0

γk+1E
[∣∣∣wT

k (P̃ Ãk+1
K − PAk+1

K )x
∣∣∣]

+ 2

∞∑
k=1

γk+1E
[∣∣∣wT

k

(
P̃

k−1∑
τ=0

Ãk−τ
K − P

k−1∑
τ=0

Ak−τ
K

)
wτ

∣∣∣].
(30)

We handle the terms in the above inequality one by one. By
virtue of the Holder’s inequality, the first term can be bounded
by

|xT(P̃ − P )x| ≤ ∥x∥2
∥∥∥P̃ − P

∥∥∥ . (31)

Similarly, the second term can be bounded by
∞∑
k=0

γk+1E
[∣∣∣wT

k (P̃ − P )wk

∣∣∣]
≤

∞∑
k=0

γk+1σ2
∥∥∥P̃ − P

∥∥∥ ≤ σ2γ

1− γ

∥∥∥P̃ − P
∥∥∥ . (32)

For the third term, we have

2

∞∑
k=0

γk+1E
[∣∣∣wT

k (P̃ Ãk+1
K − PAk+1

K )x
∣∣∣]

= 2

∞∑
k=0

γk+1E
[∣∣∣wT

k

(
P̃ − P

)
Ãk+1

K x

+ wT
k P

(
Ãk+1

K −Ak+1
K

)
x
∣∣∣]

≤ 2

∞∑
k=0

γk+1E
[
∥wk∥

∥∥∥P̃ − P
∥∥∥∥∥∥Ãk+1

K

∥∥∥ ∥x∥ ]
+ 2

∞∑
k=0

γk+1E
[
∥wk∥ ∥P∥

∥∥∥Ãk+1
K −Ak+1

K

∥∥∥ ∥x∥ ]
≤ 2σ

∥∥∥P̃ − P
∥∥∥ ∥x∥ ∞∑

k=0

γk+1
∥∥∥Ãk+1

K

∥∥∥
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+ 2σ ∥P∥ ∥x∥
∞∑
k=0

γk+1
∥∥∥Ãk+1

K −Ak+1
K

∥∥∥ . (33)

By decomposing the term Ãk+1
K − Ak+1

K = (ÃK −
AK)(

∑k
i=0 Ã

k−i
K Ai

K), we have∥∥∥Ãk+1
K −Ak+1

K

∥∥∥
≤

∥∥∥ÃK −AK

∥∥∥ ∥∥∥∥∥
k∑

i=0

Ãk−i
K Ai

K

∥∥∥∥∥
≤

∥∥∥ÃK −AK

∥∥∥ ( k∑
i=0

∥∥∥Ãk−i
K Ai

K

∥∥∥)
≤ ∥∆AK∥ (

k∑
i=0

∥∥∥Ãk−i
K

∥∥∥∥∥Ai
K

∥∥)
≤ ∥∆AK∥ (k + 1)ρkK ≤ ∥∆AK∥U. (34)

Define the function f(k) = (k+ 1)ρkK , and the constant U =

max{1, 1
ρ0
ρ
(1−ρ0)/ρ0

K }, ρ0 = ln(1/ρK). It is easy to verify that
the function f(k) obtains the maximum at k = 0 if ρ0 ≥ 1
and at k = 1−ρ0

ρ0
if ρ0 < 1. Therefore, the last inequality

follows since f(k) ≤ max{1, 1
ρ0
ρ
(1−ρ0)/ρ0

K } = U for all k ≥
0. Substituting (34) into (33), we have

2

∞∑
k=0

γk+1E
[∣∣∣wT

k (P̃ Ãk+1
K − PAk+1

K )x
∣∣∣]

≤ 2σ ∥P∥ ∥x∥Uγ

1− γ
∥∆AK∥

+ 2σ
∥∥∥P̃ − P

∥∥∥ ∥x∥ ∞∑
k=0

γk+1
∥∥∥Ãk+1

K

∥∥∥
≤ 2σ ∥P∥ ∥x∥Uγ

1− γ
∥∆AK∥+ 2σ

∥∥∥P̃ − P
∥∥∥ ∥x∥ ∞∑

k=0

(γρK)k+1

≤ 2σ ∥P∥ ∥x∥Uγ

1− γ
∥∆AK∥+ 2σγρK

1− γρK
∥x∥

∥∥∥P̃ − P
∥∥∥ ,

(35)

where the second inequality follows since
∥∥∥Ãk+1

K

∥∥∥ ≤∥∥∥ÃK

∥∥∥k+1

≤ ρk+1
K . For the fourth term, we have

2

∞∑
k=1

γk+1E
[∣∣∣wT

k

(
P̃

k−1∑
τ=0

Ãk−τ
K wτ − P

k−1∑
τ=0

Ak−τ
K wτ

)∣∣∣]
= 2

∞∑
k=1

γk+1E
[∣∣∣wT

k

(
P̃

k−1∑
τ=0

Ãk−τ
K wτ − P

k−1∑
τ=0

Ãk−τ
K wτ

+ P

k−1∑
τ=0

Ãk−τ
K wτ − P

k−1∑
τ=0

Ak−τ
K wτ

)∣∣∣]
≤ 2

∞∑
k=1

γk+1E
[∣∣∣wT

k

(
P̃ − P

) k−1∑
τ=0

Ãk−τ
K wτ

∣∣∣]
+ 2

∞∑
k=1

γk+1E
[∣∣∣wT

k P

k−1∑
τ=0

(
Ãk−τ

K −Ak−τ
K

)
wτ

∣∣∣]
≤ 2

∞∑
k=1

γk+1E
[
∥wk∥

∥∥∥P̃ − P
∥∥∥∥∥∥∥∥

k−1∑
τ=0

Ãk−τ
K wτ

∥∥∥∥∥ ]

+ 2

∞∑
k=1

γk+1E
[
∥wk∥ ∥P∥

∥∥∥∥∥
k−1∑
τ=0

(
Ãk−τ

K −Ak−τ
K

)
wτ

∥∥∥∥∥ ]
≤ 2

∞∑
k=1

γk+1E
[
∥wk∥ ∥P∥

k−1∑
τ=0

∥∥∥Ãk−τ
K −Ak−τ

K

∥∥∥ ∥wτ∥
]

+ 2

∞∑
k=1

γk+1E
[
∥wk∥

∥∥∥P̃ − P
∥∥∥ k−1∑

τ=0

∥∥∥Ãk−τ
K

∥∥∥ ∥wτ∥
]

≤ 2σ2 ∥P∥
∞∑
k=1

γk+1
k−1∑
τ=0

∥∥∥Ãk−τ
K −Ak−τ

K

∥∥∥
+ 2σ2

∥∥∥P̃ − P
∥∥∥ ∞∑

k=1

γk+1
k−1∑
τ=0

∥∥∥Ãk−τ
K

∥∥∥ , (36)

where the last inequality follows since wk and wτ , τ =
0, 1, . . . , k − 1 are independent. By decomposing the term
Ãk−τ

K −Ak−τ
K , we have

k−1∑
τ=0

∥∥∥Ãk−τ
K −Ak−τ

K

∥∥∥
=

k−1∑
τ=0

∥∥∥∥∥(ÃK −AK)

k−τ−1∑
i=0

Ãk−τ−1−i
K Ai

K

∥∥∥∥∥
≤

k−1∑
τ=0

∥∥∥ÃK −AK

∥∥∥∥∥∥∥∥
k−τ−1∑
i=0

Ãk−τ−1−i
K Ai

K

∥∥∥∥∥
≤

∥∥∥ÃK −AK

∥∥∥ k−1∑
τ=0

k−τ−1∑
i=0

ρk−τ−1
K

= ∥∆AK∥
k−1∑
τ=0

(k − τ)ρk−τ−1
K

= ∥∆AK∥
k∑

i=1

iρi−1
K

≤ ∥∆AK∥
(1− ρK)2

, (37)

where the last inequality follows since Sk :=
∑k

i=1 iρ
i−1
K =

1−ρk
K

(1−ρK)2 − kρk
K

1−ρK
≤ 1

(1−ρK)2 . Substituting (37) into (36), we
have

2

∞∑
k=1

γk+1E
[∣∣∣wT

k

(
P̃

k−1∑
τ=0

Ãk−τ
K wτ − P

k−1∑
τ=0

Ak−τ
K wτ

)∣∣∣]
≤ 2σ2 ∥P∥

∞∑
k=1

γk+1 ∥∆AK∥
(1− ρK)2

+ 2σ2
∥∥∥P̃ − P

∥∥∥ ∞∑
k=1

γk+1
k−1∑
τ=0

∥∥∥Ãk−τ
K

∥∥∥
≤ 2σ2 ∥P∥ γ2

(1− γ)(1− ρK)2
∥∆AK∥

+ 2σ2
∥∥∥P̃ − P

∥∥∥ ∞∑
k=1

γk+1
k−1∑
τ=0

ρk−τ

≤ 2σ2 ∥P∥ γ2 ∥∆AK∥
(1− γ)(1− ρK)2

+
2σ2

∥∥∥P̃ − P
∥∥∥

(1− γ)(1− ρK)
. (38)
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Combining (31), (32), (35), (38) and (30), we have

E
[
|Ỹ |

]
≤

(
∥x∥2 + σ2γ

1− γ

) ∥∥∥P̃ − P
∥∥∥

+
2σ ∥P∥ ∥x∥Uγ

1− γ
∥∆AK∥+ 2σγρK ∥x∥

1− γρK

∥∥∥P̃ − P
∥∥∥

+
2σ2 ∥P∥ γ2 ∥∆AK∥
(1− γ)(1− ρK)2

+
2σ2

∥∥∥P̃ − P
∥∥∥

(1− γ)(1− ρK)

:= c̃3

∥∥∥P̃ − P
∥∥∥+ c̃4 ∥∆AK∥ , (39)

where

c̃3 = ∥x∥2 + σ2γ

1− γ
+

2σγρK ∥x∥
1− γρK

+
2σ2

(1− γ)(1− ρK)
,

c̃4 =
2σ ∥P∥ ∥x∥Uγ

1− γ
+

2σ2 ∥P∥ γ2

(1− γ)(1− ρK)2
.

Substituting (39) into (29) and using (28), we have

sup
z

|FK
x (z)− F̃K

x (z)|

≤ f̃max(c̃3

∥∥∥P̃ − P
∥∥∥+ c̃4 ∥∆AK∥)

≤ f̃maxc̃3
2 ∥P∥F
l − 2ϵ

(
γ ∥AK∥F ∥∆AK∥F +

γ

2
∥∆AK∥2F

)
+ f̃maxc̃4 ∥∆AK∥

≤
(2f̃maxc̃3

√
nγ ∥AK∥F ∥P∥F
l − 2ϵ

+ f̃maxc̃4

)
∥∆AK∥

+
f̃maxc̃3nγ ∥P∥F

l − 2ϵ
∥∆AK∥2

:= c̃1 ∥∆AK∥+ c̃2 ∥∆AK∥2 ,

where the last inequality follows from ∥M∥F ≤
√
n ∥M∥2

for any matrix M ∈ Rn×n. The proof is complete and also
yields the expression of the constants c̃1, c̃2.

C. Proof of Theorem 5

It follows that

sup
z

|F̂K,T
x,M (z)− FK

x (z)|

≤ sup
z

|F̂K,T
x,M (z)− FK,T

x (z)|+ sup
z

|FK,T
x (z)− FK

x (z)|.

(40)

Note that F̂K,T
x,M and FK,T

x are the EDF and CDF of the
random variable GK,T (x), respectively. By virtue of the
Dvoretzky–Kiefer–Wolfowitz inequality, we have

sup
z

|F̂K,T
M (z)− FK,T (z)| ≤

√
ln(1/δ)

2M
, (41)

with probability at least 1 − δ. Define the random variable
ZT = GK(x) − GK,T (x) =

∑∞
T+1 γ

txT
t (Q + KTRK)xt

Further, we have

sup
z

|FK,T
x (z)− FK

x (z)|

= sup
z

∣∣∣P{GK,T (x) ≤ z} − P{GK(x) ≤ z}
∣∣∣

= sup
z

∣∣∣P{GK,T (x) ≤ z} − P{GK,T (x) + ZT ≤ z}
∣∣∣

= sup
z

∣∣∣P(GK,T (x) ≤ z)

∫ ∞

−∞
P(ZT = t)dt

−
∫ ∞

−∞
P(GK,T (x) ≤ z − t)P(ZT = t)dt

∣∣∣
= sup

z

∣∣∣ ∫ ∞

−∞
P(ZT = t)

(
FK,T
x (z)− FK,T

x (z − t)
)
dt
∣∣∣

≤ sup
z

∣∣∣ ∫ ∞

−∞
P(ZT = t)fmax|t|dt

∣∣∣
= fmaxE

[
|ZT |

]
. (42)

Now we focus on E|ZT |. From its definition, it gives

E
[
|ZT |

]
= E

[ ∞∑
t=T+1

γtxT
t (Q+KTRK)xt

]
≤ E

[ ∞∑
t=T+1

γt
∥∥Q+KTRK

∥∥ ∥xt∥2
]
. (43)

From xt+1 = AKxt + wt, where AK = A+BK, we have

xt = At
Kx+

t−1∑
τ=0

At−1−τ
K wτ . (44)

Hence,

E[∥xt∥2] = E
[ ∥∥∥∥∥At

Kx+

t−1∑
τ=0

At−1−τ
K wτ

∥∥∥∥∥
2 ]

≤ E
[ ∥∥At

Kx
∥∥2 + ∥∥∥∥∥

t−1∑
τ=0

At−1−τ
K wτ

∥∥∥∥∥
2

+ 2
∥∥At

Kx
∥∥∥∥∥∥∥

t−1∑
τ=0

At−1−τ
K wτ

∥∥∥∥∥ ]

≤ ρ2tK ∥x∥2 + E
[ ∥∥∥∥∥

t−1∑
τ=0

At−1−τ
K wτ

∥∥∥∥∥
2

+ 2ρtK ∥x∥

∥∥∥∥∥
t−1∑
τ=0

At−1−τ
K wτ

∥∥∥∥∥ ], (45)

where the last inequality follows from ∥At
Kx∥ ≤ ∥At

K∥ ∥x∥ ≤
ρtK ∥x∥. Further, we have

E

[∥∥∥∥∥
t−1∑
τ=0

At−1−τ
K wτ

∥∥∥∥∥
]
≤ E

[
t−1∑
τ=0

∥∥At−1−τ
K

∥∥ ∥wτ∥

]

≤ σ

t−1∑
τ=0

∥∥At−1−τ
K

∥∥ ≤ σ

t−1∑
τ=0

ρt−1−τ
K ≤ σ

1− ρK
, (46)

where the first inequality follows from the Cauchy–Schwarz
inequality, the second inequality follows from E2[∥wk∥] ≤
E[∥wk∥2] ≤ σ2, and the third inequality follows from∥∥At+N+1

K

∥∥ ≤ (∥AK∥)t+N+1 ≤ ρt+N+1
K . Further,

E

∥∥∥∥∥
t−1∑
τ=0

At−1−τ
K wτ

∥∥∥∥∥
2


= E

[
t−1∑
τ=0

wT
τ (A

t−1−τ
K )TAt−1−τ

K wτ

]
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≤ E

[
t−1∑
τ=0

∥∥(At−1−τ
K )TAt−1−τ

K

∥∥ ∥wτ∥2
]

≤ σ2
t−1∑
τ=0

∥∥(At−1−τ
K )TAt−1−τ

K

∥∥
≤ σ2

t−1∑
τ=0

ρ
2(t−1−τ)
K ≤ σ2

1− ρ2K
, (47)

where the first equality follows from the fact that the random
variables wτ , τ ∈ N, are i.i.d. and with zero mean. The
first inequality follows from the Cauchy-Schwarz inequality
and the third inequality follows from

∥∥(At−1−τ
K )TAt−1−τ

K

∥∥ ≤∥∥(At−1−τ
K )T

∥∥∥∥At−1−τ
K

∥∥ ≤ ρ
2(t−1−τ)
K . Substituting (46) and

(47) into (45), we have

E[∥xt∥2] ≤ ρ2tK ∥x∥2 + σ2

1− ρ2K
+

2ρtK ∥x∥σ
1− ρK

. (48)

Substituting (48) into (43), we have

E
[
|ZT |

]
≤

∥∥Q+KTRK
∥∥ ∞∑

t=T+1

γt
(
ρ2tK ∥x∥2 + σ2

1− ρ2K

+
2ρtK ∥x∥σ
1− ρK

)
≤

∥∥Q+KTRK
∥∥(γT+1ρ

2(T+1)
K ∥x∥2

1− γρ2K

+
2γT+1ρT+1

K ∥x∥σ
(1− ρK)(1− γρK)

+
γT+1σ2

(1− γ)(1− ρ2K)

)
= ∥QK∥ γT+1(c1ρ

2(T+1)
K + c2ρ

T+1
K + c3). (49)

Combining (40), (41), (42) and (49), it gives

sup
z

|F̂K,T
M (z)− FK(z)|

≤ sup
z

|F̂K,T
M (z)− FK,T (z)|+ sup

z
|FK,T (z)− FK(z)|

≤fmax ∥QK∥ γT+1(c1ρ
2(T+1)
K + c2ρ

T+1
K + c3) +

√
ln(1/δ)

2M
,

which completes the proof.

REFERENCES

[1] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional
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Distributionally robust linear quadratic control. arXiv preprint
arXiv:2305.17037, 2023.

[32] Zifan Wang, Yulong Gao, Siyi Wang, Michael M Zavlanos, Alessandro
Abate, and Karl Henrik Johansson. Policy evaluation in distributional
LQR. In Learning for Dynamics and Control Conference, pages 1245–
1256. PMLR, 2023.
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