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Abstract— In this paper we develop an intermittent commu-
nication framework for mobile robot networks. Intermittent
communication provides significantly more flexibility to the
robots to accomplish their tasks compared to approaches that
enforce communication constraints for all time. We consider
robots that move along the edges of a mobility graph and
communicate only when they meet at the nodes of that graph
giving rise to a dynamic communication network. Assuming
that the mobility graph is connected, we design distributed
controllers for the robots that determine meeting times at
the vertices of the mobility graph so that connectivity of the
communication network is ensured over time, infinitely often.
We show that this requirement can be captured by a global
Linear Temporal Logic (LTL) formula that forces robots to
meet infinitely often at the rendezvous points. To generate
discrete high-level motion plans for all robots that satisfy the
LTL expression, we propose a novel technique that performs an
approximate decomposition of the global LTL expression into
local LTL expressions and assigns them to the robots. Since
the approximate decomposition of the global LTL formula can
result in conflicting robot behaviors, we develop a distributed
conflict resolution scheme that generates discrete motion plans
for every robot, based on the assigned local LTL expressions,
whose composition satisfies the global LTL formula. Computer
simulations are provided that verify the efficacy of the proposed
distributed control scheme.

I. INTRODUCTION

Communication among robots has been typically modeled
using proximity graphs and the communication problem is
often treated as preservation of graph connectivity. Graph
theoretic methods for connectivity control range from cen-
tralized [1], [2] to distributed ones [3]–[6], while a recent
survey can be found in [7]. In practice, the above graph-
based communication models turn out to be rather conser-
vative, since proximity does not necessarily imply tangible
and reliable communication and, therefore, more realistic
communication models have recently been proposed [8]–
[10].

Common in the above works is that point-to-point or end-
to-end network connectivity is required to be preserved for all
time. However, this requirement is often very conservative,
since limited resources, e.g., transmission power or number
of wireless robots, may hinder robots from accomplishing
their assigned goals. Motivated by this fact, in this paper we
propose a distributed intermittent communication protocol
for mobile robot networks. In particular, we consider that
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robots move along the edges of a mobility graph and com-
municate only when they meet at the vertices of this graph
giving rise to a dynamic communication network. Assuming
that the mobility graph is connected, we design distributed
controllers for the robots that determine meeting times at
the vertices of the mobility graph so that connectivity of the
communication network is ensured over time, infinitely often.
We show that intermittent connectivity of the communication
network can be captured by a global Linear Temporal Logic
(LTL) formula that forces robots to meet infinitely often at
the rendezvous points. Given such a LTL expression, existing
model checking techniques [11], [12] can be employed in
order to implement correct by construction controllers for
all robots.

LTL-based control synthesis and task specification for
mobile robots build upon either a bottom-up approach when
independent LTL expressions are assigned to robots [13]–
[16] or top-down approaches when a global LTL describing
a collaborative task is assigned to a team of robots [17], [18],
as in our work. Top-down approaches generate a discrete
high-level motion plan for all robots using a discretized ab-
straction of the environment and constructing a synchronous
product automaton among the agents and, therefore, they
are resource demanding and scale poorly with the number
of robots. To mitigate these issues, we propose a novel
technique that approximately decomposes the global LTL
formula into local ones and assigns them to robots. Since the
approximate decomposition of the global LTL formula can
result in conflicting robot behaviors we develop a distributed
conflict resolution scheme that generates discrete motion
plans for every robot based on the assigned local LTL
expressions. To the best of our knowledge, although specific
to the problem under consideration, this is the first distributed
and scalable LTL-based framework for the coordination of
teams of multiple robots.

The most relevant works to the one proposed here are
presented in [19]–[21]. Specifically, in [19] an intermittent
communication control scheme is proposed. This approach
ensures communication among robots infinitely often, how-
ever, this method is centralized and does not scale well
with the number of robots. [20] proposes a distributed
synchronization scheme that allows robots that move along
the edges of a bipartite mobility graph to meet periodically
at the vertices of this graph. Instead, here we make no
assumptions on the graph structure on which robots reside
or on the communication pattern to be achieved. On the
other hand, [21] proposes a receding horizon framework
for periodic connectivity that ensures recovery of end-to-end



Fig. 1. A graphical illustration of the problem formulation. Black squares
represent communication points and red circles stand for robots rij that
move along paths γij that are depicted by black dashed curves.

connectivity within a given time horizon. As the number of
robots or the size of the time horizon grows, this approach
can become computationally expensive. To the contrary, our
proposed method scales very well to large numbers of robots
and can handle situations where the whole network can not
be connected at once, by ensuring connectivity over time,
infinitely often.

II. PROBLEM FORMULATION

Assume R locations in space positioned at vi ∈ Rn and
paths γij : [0, 1] → Rn that connect two locations i and
j such that γij(0) = vi and γij(1) = vj . The union of
locations vi and paths γij gives rise to an undirected graph
G = {V, E}, where the set of nodes V = {1, 2, . . . , R} is
indexed by the set of locations vi and the set of edges E ⊆
V × V is determined by the paths γij such that an edge
(i, j) ∈ E exists if and only if a path γij exists. Two nodes
i, j are called neighbors in G if and only if there exists an
edge (i, j) ∈ E and, thus, we can define the set of neighbors
of node i by Ni = {j ∈ V|(i, j) ∈ E}. In what follows, we
assume that the graph G is connected.

Consider also a team of N = |E| robots so that robot
rij moves back and forth between the nodes i and j in G,
along the path γij , to possibly accomplish some high-level
task (see also Figure 1). We call G a mobility graph and
assume the robots move along the edges of G according to
the following kinematics:

ẋij(t) = uij(t), (1)

where xij(t) ∈ Rn is the position of robot rij at time t and
uij(t) ∈ Rn is a control action that drives that robot between
nodes vi and vj along the path γij .

A. Discretized Abstraction of the Workspace

Since robot rij moves back and forth between the nodes i
and j along the path γij , we can construct a transition system
(TS) denoted by TSij to abstract the motion of every robot
rij , which is defined as follows

Definition 2.1 (Transition System): A transition system
TSij is a tuple

(
Qij , q

0
ij ,Aij ,→ij ,AP, Lij

)
where

• Qij =
{
qvi
ij , q

vj

ij

}
is the set of states, where the states

qvi
ij and q

vj

ij indicate that robot rij is at node i and j,
respectively,

• q0ij ∈ Qij is the initial state,
• Aij is a set of actions. The available actions in state
qvi
ij are ‘go to state qvj

ij ’ and ‘wait in state qvi
ij ’.

• →ij⊆ Qij ×Aij ×Qij is the transition relation,
• AP is the set of atomic propositions, and
• Lij : Qij → 2AP is an observation/output relation

giving the set of atomic propositions that are satisfied
in a state.

In what follows we give definitions related to TSij , that
we will use throughout the rest of the paper.

Definition 2.2 (Infinite Path): An infinite path τij of TSij

is an infinite sequence of states, τij = τij(1)τij(2)τij(3) . . .
such that τij(1) = q0ij , τij(k) ∈ Qij , and (τij(k), akij , τij(k+
1)) ∈→ij , for some akij ∈ Aij , ∀k.1

Definition 2.3 (Composition): Composition of M infinite
paths τm = τm(1)τm(2)τm(3) . . . , where m ∈ {1, . . . ,M},
denoted by τ = ⊗∀mτm is an infinite sequence of states
defined as τ = τ(1)τ(2) · · · = [τ(k)]

∞
k=1, where τ(k) =

(τ1(k), τ2(k), . . . , τM (k)).
Definition 2.4 (Projection): For an infinite path τ =

τ(1)τ(2)τ(3) . . . , we denote by Π|TSijτ its projection onto
TSij , which is obtained by erasing all states in τ that do not
belong to Qij .

Definition 2.5 (Trace of infinite path): The trace of an in-
finite path τij = τij(1)τij(2)τij(3) . . . of a transition
system TSij , denoted by trace(τij), is an infinite word
that is determined by the sequence of atomic propositions
that are true in the states along τij , i.e., trace(τij) =
Lij(τij(1))Lij(τij(2)) . . . .

Definition 2.6 (Motion Plan): Given a LTL formula φ, a
transition system TSij both defined over the set of atomic
propositions AP , an infinite path τij of TSij is called
motion plan if and only if trace(τij) ∈ Words(φ), where
Words(φ) =

{
σ ∈ (2AP)ω|σ |= φ

}
is defined as the set of

words σ ∈ (2AP)ω that satisfy the LTL φ and |=⊆ (2AP)×
φ is the satisfaction relation. The relation trace(τij) ∈
Words(φ) is equivalently denoted by τij |= φ.

B. Communication Network

We assume that robots can communicate only if they are
physically located at a common rendezvous point. This way,
a dynamic robot communication graph Gc = {Vc, Ec} is
constructed where the set of nodes Vc is indexed by robots,
i.e., Vc = {1, 2, . . . , N} and Ec ⊆ Vc×Vc is the set of com-
munication links that emerge among robots when they are
located at the same rendezvous point. At every rendezvous
point i communication takes place when all robots in the
set Ri = {rij |j ∈ Ni} are present at node i, simultaneously.
Hence, every robot rij can directly communicate with all
robots that belong to the set Nij = Ri ∪ Rj \ {rij}. Then
the communication graph Gc is defined to be connected over

1A finite path of TSij can be defined accordingly. The only difference
with the infinite path is that a finite path is defined as a finite sequence of
states of TSij .



time if all robots in Ri meet at the rendezvous point i
infinitely often, for all nodes i ∈ V . Such a requirement
can be captured by the following global LTL expression:

φ =
∧

i∈V

(
�♦

∧
j∈Ni

πvi
ij

)
, (2)

where πvi
ij is an atomic proposition defined as

πvi
ij =

{
1 if ‖xij − vi‖ ≤ ε
0 otherwise, (3)

for a sufficiently small ε > 0,
∧

is the conjuction operator,
while � and ♦ stand for the temporal operators ‘always’ and
‘eventually’, respectively. For more details on LTL, we refer
the reader to [11], [12].

Assuming that all robots rij make transitions syn-
chronously by picking their next state in their respective
transition systems, the problem that is addressed in this paper
can be stated as:

Problem 1: Given any initial configuration of the robots
in the mobility graph G determine motion plans τij for all
robots rij such that the global LTL expression given in (2)
is satisfied, i.e., connectivity of the communication graph Gc
is guaranteed over time, infinitely often.

III. INTERMITTENT COMMUNICATION CONTROL

To solve Problem 1, known centralized model checking
techniques can be employed, that typically rely on a dis-
cretized abstraction of the environment captured by a TS and
the construction of a synchronized product system among
all robots of the network. As a result, such approaches
are resource demanding and scale poorly with the size of
the network. Therefore, a distributed solution is preferred
whereby discrete high-level motion plans for every robot can
be computed locally across the network. For this purpose,
notice first that although the global LTL formula (2) is not
decomposable with respect to robots, it can be decomposed
in local LTL formulas φvi

associated with the rendezvous
nodes i ∈ V , which are coupled with each other by the
conjunction operator ∧. Specifically, we can write φ =∧

i∈V φvi
, where φvi

is defined as

φvi
= �♦

(∧
j∈Ni

πvi
ij

)
, (4)

and forces all robots rij ∈ Ri to meet infinitely often at the
rendezvous point located at vi.

Given the decomposition of φ into local LTL formulas
φvi

, every robot rij needs to develop motion plans τij so
that the composition of plans τim, ∀rim ∈ Ri denoted by
τvi = ⊗rim∈Riτim and the composition of plans τjn, ∀rjn ∈
Rj , denoted by τvj

= ⊗rjn∈Rj
τjn satisfy the local LTL

expressions φvi
and φvj

, respectively. In this way, we can
ensure that the composition of τij , ∀rij , satisfies the global
LTL expression (2), since all local LTL expressions φvi are
satisfied.

Motion plans τvi |= φvi , ∀i, can be constructed using
existing tools from model checking theory [11], [12]. How-
ever, notice that constructing plans τvi

and τvj
, j ∈ Ni

independently cannot ensure that the robots’ behavior in
the workspace will satisfy the global LTL formula (2). The
reason is that the local LTL formulas φvi

in (4) are not
independent from each other, since they are coupled by
robots’ state in their respective transition systems. In other
words, since every robot rij is responsible for communi-
cating with other robots at vertices vi and vj , this implies
that the LTL expressions φvi and φvj are coupled with each
other by robot rij through the atomic propositions πvi

ij and
π
vj

ij . Consequently, generating plans τvi
|= φvi

that ignore
the LTL expressions φvj∈Ni

may result in conflicting robot
behaviors, since the projection of the motion plans τvi

and
τvj

onto TSij may result in two different motion plans τij .
This means that cases where a robot rij needs to be located
at two different positions in TSij simultaneously may occur.

To circumvent these issues, we propose a distributed algo-
rithm (Algorithm 1) that implements free-of-conflict discrete
motion plans τij , ∀rij , using the motion plans τvi and τvj

constructed by existing model checking algorithms so that
the global LTL expression φ is satisfied. In what follows, first
we construct motion plans τvi

|= φvi
. Then our proposed

algorithm will be described that constructs non-conflicting
robot motion plans τij using the motion plans τvi and τvj

so that the global LTL (2) is satisfied.

A. Construction of motion plans τvi |= φvi

Given a LTL formula φvi
and the transition systems

TSij of all robots rij ∈ Ri a motion plan τvi
|= φvi

can be constructed using existing automata-based model
checking methods [11], [12]. Such methods typically rely
on constructing a Product Büchi Automaton and checking the
non-emptiness of its accepting language. Instead of following
such an approach, we take advantage of the simple structure
of the transition systems TSij to construct motion plans τvi

that satisfy φvi . In particular, we consider the infinite path
τvi defined as follows

τvi
=

{[
q0vi
q1vi

] [
q1vi

]ω
, if q0vi

6= q1vi
.[

q0vi

] [
q0vi

]ω
, otherwise,

(5)

where q0vi
is the initial state of robots rij ∈ Ri, i.e.,

q0vi
= ((q0ij1 , q

0
ij2
, . . . , q0ij|Ni|

)) and q1vi
is a state where

all robots rij ∈ Ri are present at node i, i.e., q1vi
=

(qvi
ij1
, qvi

ij2
, . . . , qvi

ij|Ni|
). The infinite path ΠTSijk

τvi
defined

in (5) satisfies the transition rule −→TSijk
for all rijk ∈ Ri,

since all TSijk have only two states and there are actions
that allow transitions among those states. Also, τvi

satisfies
φvi

, since it forces all robots in Ri to visit node i and stay
there forever. Therefore, we conclude τvi |= φvi .

B. Conflict Resolution Coordination

Given the motion plans τvi
|= φvi

and τvj
|= φvj

,
all robots rij need to construct discrete motion plans τij
whose composition satisfies φ. To achieve that, we propose a
distributed algorithm that resolves any conflicts in the robot
behavior introduced by the motion plans τvi and τvj and



constructs motion plans τij which have the following general
form

τij = τij(1)τij(2) . . .

=

[
X . . .XΠ|TSij τvi (k)X . . .XΠ|TSij τvj (k)X . . .X︸ ︷︷ ︸

`

]∞
k=1

=
[
pkij

]∞
k=1

, (6)

such that τij(1) = q0ij . I.e., τij can be written as the
concatenation of the finite paths pkij of TSij , ∀k ∈ N+. In
(6) ` is the length of the path pkij and is a priori selected to
be ` = max {dvi}

R
i=1 + 1 for all robots, where dvi denotes

the degree of vertex i in graph G. This particular choice for
the parameter ` ensures the construction of free-of-conflict
motion plans, as it will shown in Proposition 3.2. Also, in
(6), Π|TSij

τvi
(k) denotes the k-th state of robot rij in TSij

according to the motion plan τvi . Furthermore, the state
X denotes that robot rij can be in any state of its TSij ;
hereafter, we assume that in the X states every robot decides
to wait at its current state in TSij .

The finite paths pkij are constructed sequentially across the
nodes i ∈ V , as follows. Let S = {v1, . . . ,vi, . . . } be an
ordered sequence of the nodes in the mobility graph G, so
that consecutive nodes in S are connected by an edge in G.
We assume that S is known by all robots and that every robot
rij is initially located at either node vi or vj , whichever
appears first in S. Assume that paths have been constructed
for all nodes in S that precede vi and that currently all
robots rij ∈ Ri are located at node i and coordinate to
construct the paths pkij . Since consecutive nodes in S are
connected by an edge in G, this means that there is at least
one robot rim ∈ Nij which previously constructed its path
pkim by placing at its nvi

im-th entry the state Π|TSimτvi(k),
i.e., pkim(nvi

im) = Π|TSim
τvi

(k). Then robot rij constructs the
path pkij based on three rules. According to the first rule, the
state Π|TSij

τvi
(k) will be placed at the nvi

ij -th entry, which
is selected to be equal to nvi

im, which is common for all
robots rim ∈ Nij [line 1, Alg. 1]. This ensures that robot
rij and all other robots rim will meet at the same time at vi,
as it will be shown in Proposition 3.4. The next step is to
place the state Π|TSij

τvj
(k) at the nvj

ij -th entry of pkij . The
index n

vj

ij will be determined by one of the two following
rules. If there exist robots rmj ∈ Nij that have already
constructed the paths pkmj , then the index n

vj

ij is selected
to be equal to n

vj

mj , which is common for all rmj ∈ Nij

[line 3, Alg. 1]. Otherwise, the state Π|TSij
τvj

(k) can be
placed at any free entry of pkij indexed by nvj

ij , provided that
the nvj

ij -th entry of all paths pkim of the robots rim ∈ Nij

that have already been constructed does not contain states
Π|TSim

τvm
(k) with m ∈ Nj [line 5, Alg. 1]. Note that

without the third rule [line 5], at a subsequent iteration of
this procedure, robot rjm ∈ Nij would have to place the
states Π|TSjm

τvj (k) and Π|TSjm
τvm(k) at a common entry of

pkjm, i.e., nvj

jm = nvm
jm , due to the two previous rules and,

therefore, a conflicting behavior for robot rjm would occur.
In all the remaining entries of pkij , Xs are placed [line 7, Alg.

Algorithm 1 Construction of motion plans τij = [pkij ]
∞
k=1 at

node i
Require: Already constructed finite paths pkim and pkmj of

robots in Nij ;
Require: All robots in Ri are located at node i;

1: pkij(n
vi
ij ) := Π|TSij

τvi
(k), nvi

ij = nvi
im, ∀rim ∈ Nij ;

2: if there exist constructed paths pkmj then
3: pkij(n

vj

ij ) := Π|TSij
τvj

(k), nvj

ij = n
vj

mj , ∀rmj ∈ Nij ;
4: else
5: pkij(n

vj

ij ) := Π|TSijτvj (k) provided either pkim(n
vj

ij ) =

X , or pkim(n
vj

ij ) = Π|TSimτvm(k) with m /∈ Nj ,
∀rim ∈ Nij ;

6: end if
7: Put Xs in the remaining entries;
8: Transmit path pkij to a robot in Ri that has not con-

structed its motion plan. If there are not such robots, all
robots rij ∈ Ri depart from node i;

1].2 This procedure is repeated until all robots rij ∈ Ri have
constructed their respective paths pkij . Once this happens, all
robots rij depart from node vi and travel to the node vj

[line 8, Alg. 1]. At that point, all robots connected to the
next node in S are present at that node, and can coordinate
to compute their respective paths, as before. The procedure
is repeated sequentially over the nodes in S until all robots
have computed their paths. When all robots have constructed
their finite paths, they exchange a set of indices denoted by
Xij that collects the indices nXij at which pkij(n

X
ij ) = X . If

there exist states pkij(n
X
ij ) = X , for some nXij ∈

⋂
∀rmn

Xmn,
they are discarded, since in these states all robots rij wait
at their current states. Communication between the robots
in this last stage of the algorithm can happen in the order
defined by S, as before.

Remark 3.1: Note that communication according to S is
very predictable and inefficient as it, e.g., does not allow for
simultaneous meetings at the nodes of G. For these reasons
it is only used to construct conflict-free motion plans that
allow for much more efficient intermittent communication
between robots.

C. Correctness of the Proposed Algorithm

In this section, we show that the composition of the
distributed discrete motion plans τij satisfies the global LTL
expression (2), i.e., that all robots rij ∈ Ri rendezvous
infinitely often at node i, for all nodes i ∈ V . To prove this
result, we need first to show that Algorithm 1 can develop
non-conflicting motion plans τij , for which we have the
following two results.

2If i = 1 then initially, a randomly selected robot r1j creates arbitrarily
its path pk1j by placing the states Π|TS1j τv1 (k) and Π|TS1j τvj (k) at the
nv1
1j -th and n

vj

1j -th entry of pk1j , respectively, with nv1
1j 6= n

vj

1j . Then
the procedure previously described follows. Moreover, depending on the
structure of the mobility graph G it is possible that a node vi appears more
than once in S. In this case, robots rij ∈ Ri construct the finite paths pkij
only the first time that vi appears in S.



Proposition 3.2: Algorithm 1 can always construct finite
paths pkij with length at most equal to ` = max {dve

}Re=1+1.
Proof:

The proof is based on contradiction. Assume that a robot
rij needs a finite path pkij of length greater than ` =
max{dve}Re=1 + 1 when Algorithm 1 is applied. This means
that there is a state Π|TSijτvi which cannot be placed at any
of the first ` entries of pkij . By construction of Algorithm 1,
this means that node i has at least ` = max{dve

}Re=1 + 1
neighbors in graph G, i.e., dvi

≥ max{dve
}Re=1 + 1, which

can never happen. Hence, the length ` = max {dve
}Re=1 + 1

of the path pkij is sufficiently large for the construction of
discrete motion plans τij by Algorithm 1, which completes
the proof.

Proposition 3.2 shows also that the finite paths pkij and
consequently, the motion plans τij are scale free, i.e., they
depend on the node degree of graph G, and not on its size.

Proposition 3.3: Algorithm 1 generates admissible dis-
crete motion plans τij , i.e., motion plans that are free of
conflicts and satisfy the transition rule →ij .

Proof: The discrete motion plans τij satisfy the transi-
tion rule→ij by construction of the transition systems TSij .
In particular, all transitions from τij(k) to τij(k+ 1), for all
k, satisfy the transition rule in TSij , since all TSij have only
two states and there are actions that allow transitions among
those states.

A conflicting behavior for robot rij can occur if this
robot needs to be located at two different states in TSij ,
simultaneously. Note that this can not happen, since in pkij
there are always two available entries nvi

ij and n
vj

ij for the
plans Π|TSijτvi(k) and Π|TSijτvj (k) such that nvi

ij 6= n
vj

ij ,
as shown in Proposition 3.2. Therefore, robot rij will never
need to be at states Π|TSij

τvi
(k) and Π|TSij

τvj
(k) at the

same time, which completes the proof.
The following proposition shows that the motion plans

generated by Algorithm 1 ensure connectivity of the network
infinitely often over time, which we present without proof
due to space limitations.

Proposition 3.4: The composition of motion plans τij
generated by Algorithm 1 satisfies the global LTL expression
(2), i.e., connectivity of the robot network is ensured over
time, infinitely often.

In general, the motion plans τij are infinite paths of TSij

and, therefore, in practice they are hard to implement and
manipulate. In the following proposition, we show that the
motion plans τij have a finite representation and they can be
expressed in a prefix-suffix structure, where the prefix part
τ pre
ij is traversed only once and the suffix part τ suf

ij is repeated
infinitely.

Proposition 3.5: Algorithm 1 generates discrete motion
plans τij for all robots rij in a prefix-suffix structure, i.e.,

τij = τ pre
ij

[
τ suf
ij

]ω
, (7)

where τ pre
ij =

[
pkij
]max(Si,Sj)

k=1
, τ suf

ij =[
pkij
]max(Pi,Pj)+max(Si,Sj)

k=max(Si,Sj)+1
, and Si and Pi refer to the

length of the prefix and suffix part of τvi
, respectively. 3

Proof: The result can straightforwardly be derived by
expanding the motion plan τij given in (6) and observing the
repetitive pattern τ suf

ij =
[
pkij
]max(Pi,Pj)+max(Si,Sj)

k=max(Si,Sj)+1
.

IV. SIMULATION STUDIES

In this section, a simulation study is provided that illus-
trates our approach for a network of N = 18 robots that
move along the edges of the mobility graph shown in Figure
2. As discussed in Section III, at the beginning, all robots
rij ∈ Ri, for all nodes i, construct motion plans τvi |= φvi .
For example, for the three leftmost rendezvous points shown
in Figure 2, these motion plans have the following form:

τv1
= [(qv1

12 , q
v3
13 ) (qv1

12 , q
v1
13 )] [(qv1

12 , q
v1
13 )]

ω
, (8)

τv2
= [(qv1

12 , q
v2
23 ) (qv2

12 , q
v2
23 )] [(qv2

12 q
v2
23 )]

ω
, (9)

τv3
= [(qv3

13 , q
v2
23 , q

v5
35 , q

v4
34 ) (qv3

13 , q
v3
23 , q

v3
35 , q

v3
34 )]

[(qv3
13 , q

v3
23 , q

v3
35 , q

v3
34 )]

ω
. (10)

Then, motion plans τij are constructed by Algorithm 1
which, e.g., for robots r12, r13, r23 have the following
structure

τ12 =
[
pk12
]∞
k=1

= [Π|TS12
τv1

(k)Π|TS12
τv2

(k)X]
∞
k=1 , (11)

τ13 =
[
pk13
]∞
k=1

= [Π|TS13
τv1

(k)XΠ|TS13
τv3

(k)]
∞
k=1 , (12)

τ23 =
[
pk23
]∞
k=1

= [XΠ|TS23
τv2

(k)Π|TS23
τv3

(k)]
∞
k=1 . (13)

Using the result from Proposition 3.5, the above motion
plans can be written in the following prefix-suffix form4

τ12 =

[
qv1
12 q

v1
12 q

v1
12︸ ︷︷ ︸

=p1
12

qv1
12 q

v2
12 q

v2
12︸ ︷︷ ︸

=p2
12

][
qv1
12 q

v2
12 q

v2
12︸ ︷︷ ︸

=p3
12

]ω
, (14)

τ13 =

[
qv3
13 q

v3
13 q

v3
13︸ ︷︷ ︸

=p1
13

qv1
13 q

v1
13 q

v3
13︸ ︷︷ ︸

=p2
13

][
qv1
13 q

v1
13 q

v3
13︸ ︷︷ ︸

=p3
13

]ω
, (15)

τ23 =

[
qv2
23 q

v2
23 q

v2
23︸ ︷︷ ︸

=p1
23

qv2
23 q

v2
23 q

v3
23︸ ︷︷ ︸

=p2
23

][
qv2
23 q

v2
23 q

v3
23︸ ︷︷ ︸

=p3
23

]ω
. (16)

To illustrate that under the proposed motion plans con-
nectivity is ensured over time, we implement a consensus
algorithm over the dynamic network Gc. Specifically, we as-
sume that initially robots generate a random number vij(t0)
and when all robots rij ∈ Ri meet at a rendezvous point
i they perform the following consensus update: vij(t) =
1
|Ri|

∑
rim∈Ri

vim(t).
In Figure 2 we observe that there are robots that either

wait at the rendezvous points for the arrival of other robots
or depart from a meeting point in order to communicate

3Note that by construction of motion plans τvi in (5), we have that
Si = 1 or Si = 2, and Pi = 1.

4Note that lengths of the prefixes and suffixes of the motion plans shown
in (8), (9), and (10) are S1 = S2 = S3 = 2 and P1 = P2 = P3 = 1,
respectively.
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Fig. 2. Intermittent communication of N = 18 robots moving along
the edges of an underlying mobility graph. Blue rhombuses represent
rendezvous points and red circles stand for robots. Robots with red arrows
will move to a another rendezvous point at the next iteration, while robots
without arrows wait at their current positions for the arrival of robots.
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Fig. 3. Graphical depiction of consensus of numbers uij(t).

with other robots. Figure 3 shows that eventually all robots
reach a consensus on the numbers vij(t), as expected due
to Proposition 3.4. In our simulations, robots move with
constant velocity between their rendezvous points in G.

V. CONCLUSION

In this paper we considered the problem of controlling
connectivity of mobile networks in an intermittent fashion
providing in this way more flexibility to robots to ac-
complish their tasks as they are not always restricted by
communication constraints. In particular, we assumed that
robots move along the edges of a mobility graph and they
can communicate only when they meet at the nodes of
that network, which gave rise to a dynamic communication
network. The network was defined to be connected over
time if communication takes place at the rendezvous points
infinitely often which was encapsulated by a LTL formula.
Then to generate discrete high-level motion plans for all
robots in a distributed way, we proposed a novel technique
that performed an approximate decomposition of the global
LTL expression into local LTL expressions and assigned
them to robots. To avoid conflicting robot behaviors that
could occur due to the approximate decomposition of the
global LTL formula, we implemented a distributed conflict
resolution scheme that generated discrete motion plans for

every robot that ensure connectivity over time, infinitely
often, as verified by computer simulations.
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