
1

Global Planning for Multi-Robot Communication
Networks in Complex Environments

Yiannis Kantaros, Student Member, IEEE, and Michael M. Zavlanos, Member, IEEE

Abstract—In this paper, we consider networks of mobile
robots responsible for servicing a collection of tasks in complex
environments, while ensuring end-to-end connectivity with a fixed
infrastructure of access points. Tasks are associated with specific
locations in the environment, they are announced sequentially,
and they are not assigned a priori to any robots. Information
generated at the tasks is propagated to the access points via
a multi-hop communication network. We propose a distributed,
hybrid control scheme that dynamically grows tree networks,
rooted at the access points, with branches that connect robots that
service individual tasks to the main network structure. To achieve
this goal, the robots switch between different roles related to their
functionality in the network. The switching process is tightly
integrated with distributed optimization of the communication
variables and motion planning in complex environments, giving
rise to the proposed distributed hybrid system. Our proposed
scheme results in an efficient use of the available robots and
also allows for global planning by construction, a task that is
particularly challenging in complex environments.

Index Terms—Multi-robot networks, communication networks,
distributed control, distributed optimization, global motion plan-
ning.

I. INTRODUCTION

MOBILE robot networks have received considerable at-
tention in the recent years due to the effect they can

have in efficiently accomplishing a number of tasks involving
area coverage [1], environmental monitoring [2], and search
and rescue missions [3]. In principle, these tasks are difficult
to carry out using a single robot and, therefore, properly
organized robot teams are needed for this purpose. Successful
accomplishment of such complex tasks requires the existence
of valid communication paths for information and coordination
among the robots during the network deployment.

Recent methods for communication control of mobile robot
networks typically rely on proximity graphs to model the
exchange of information among the robots and, therefore,
the communication problem becomes equivalent to preserving
graph connectivity. Methods to control graph connectivity
typically rely on controlling the Fiedler value of the underlying
graph. One possible way of doing so is maximizing the
Fiedler value in a centralized [4] or distributed [5] fashion.
Alternatively, potential fields that model loss of connectivity as
an obstacle in the free space can be employed for this purpose,
as shown in [6]. A distributed hybrid approach to connectivity
control is presented in [7] whereby communication links are
efficiently manipulated using an approach that decouples the

This work is supported by NSF under grants CNS #1261828 and CNS
#1302284.

Yiannis Kantaros and Michael M. Zavlanos are with the Department of
Mechanical Engineering and Materials Science, Duke University, Durham,
NC 27708, USA. {yiannis.kantaros,michael.zavlanos}@duke.edu

continuous robot motion from the control of the discrete graph.
Further distributed algorithms for graph connectivity mainte-
nance have been implemented in [8], [9]. A comprehensive
survey of this literature can be found in [10].

A more realistic communication model for mobile networks
compared to the above graph-theoretic models is proposed in
[11], [12] that takes into account the routing of packets as well
as desired bounds on the transmitted rates. In this model, a
weighted graph is employed to capture the inter-robot commu-
nication with weights that are associated with the packet error
probability. A conceptually similar communication model is
proposed in [13] that models the communication rates among
robots as random variables, while the routing of information is
performed so that the uncertainty in the link rates is reduced.
A communication model that accounts for multi-path fading of
channels is proposed in [14], where robot mobility is exploited
in order to increase the throughput. Multi-path fading, shadow
fading, and path loss have also been used to model channels
in [15], [16]. In these works, a probabilistic framework for
channel prediction is developed based on a small number of
measurements of the received signal power. The integration
of the latter communication models with robot mobility is
described in [17]. A related approach pertaining to the on-
line evaluation of wireless channels is presented in [18] based
on a sampling scheme for the link capacities.

In this paper, we assume a mobile robotic network residing
in a complex environment responsible for servicing a col-
lection of tasks with the additional requirement of ensuring
reliable transmission of information to a fixed infrastructure
of access points (APs). Tasks are associated with specific
locations in the environment, which are announced sequen-
tially and are not assigned a priori to robots. Servicing a task
means that a robot is physically located in the vicinity of that
task. To model the exchange of information among the robots,
we employ the communication model presented in [11], [12],
where information is propagated to the APs through a multi-
hop network whose links model the probability that packets
are correctly decoded at their intended destinations.

To address this problem, we propose a hybrid, distributed
control scheme that achieves global planning in complex
environments. Our approach relies on dynamically growing
tree networks that connect leaf nodes/robots responsible for
servicing targets to the main network structure. Specifically,
when a new target is announced, a new branch is formed in the
existing network that is rooted at a branch junction. As this
new branch is grown the robots adopt roles associated with
specific locations that they need to visit/track in the workspace
and switch between these roles to facilitate the design of a
network that can best service the new assigned task. The above

2

coordination scheme for network design is integrated with
robot mobility and control of the communication variables to
allow the robots to move towards their assigned tasks while
ensuring reliable communication with a fixed infrastructure of
access points. Particularly, the communication variables are
updated periodically via a distributed subgradient algorithm
in the dual domain. In between communication updates, the
robots move to accomplish their tasks dictated by their roles
in the network. Motion planning takes place along obstacle-
free geodesic paths and depends on the solution of distributed
sequential convex programs that can handle the non-linear
coupling of the robots’ positions on the communication con-
straints. The distributed optimization of the communication
variables and motion control of the robots are tightly integrated
with the dynamical process that determines the roles of the
robots in the network giving rise to the proposed distributed
hybrid algorithm.

A. Contribution

Related problems that address motion control of multi-
robot systems are presented in [19]–[21] assuming obstacle-
free environments. Complex environments are considered in
[22], [23], where the task assignment problem aims at gen-
erating collision-free trajectories that connect every robot to
its assigned task. Navigation functions for driving a mobile
network to a desired configuration while avoiding collisions
with the environment have also been employed [24]. Common
in these works is that maintenance of reliable communication
among the robots during the network evolution is typically
ignored. To the best of our knowledge, the most relevant
literature to the work presented in this paper is [25], [26],
where communication-aware deployment algorithms are devel-
oped for mobile networks residing in complex environments.
Specifically, in [25], [26], to attain global planning, a rapidly
exploring random tree (RRT) algorithm [27] is employed that
requires every robot to be a priori aware of a general region
where it should lie in the final network configuration. In
other words, an estimate of the final network configuration
is necessary in this method. To the contrary, our proposed
algorithm is more flexible as the robots can determine au-
tonomously and in a distributed way a network configuration
that accomplishes a desired task; a subset of leader robots,
determined dynamically and autonomously, pursue specific
locations in space associated with the assigned task, while
all other robots move to facilitate the leaders’ motion. Ad-
ditionally, our method allows for tasks to be announced and
serviced dynamically and accounts for an efficient use of the
available robots through constructing tree network structures
and appropriately selecting branch junctions, avoiding cycles
and redundant nodes.

The rest of this paper is organized as follows. In section II,
we define the problem under consideration. Section III presents
the distributed algorithm for the update of the communication
variables, which is integrated with the robots’ mobility in
Section IV. Section V describes the proposed distributed
coordination scheme that allows robots to switch between
different roles and is critical in achieving global planning.

Simulation studies demonstrating the efficiency of our control
scheme are provided in Section VI and concluding remarks
are presented in the last section.

II. PROBLEM FORMULATION

Consider N mobile robots with wireless communication
capabilities and an infrastructure of K access points1 (APs)
that are fixed in number and remain stationary for all time.
Robots and access points are located in a complex polygonal
environment denoted by W ⊂ R2. The positions of all nodes
are stacked in the vector x = [xT1 , . . . ,x

T
i , . . . ,x

T
N+K]T ,

where it holds that i ∈ {1, . . . , N} for the robots and
i ∈ {N +1, . . . , N +K} for the APs. Furthermore, the robots
are assumed to evolve in W according to the following first-
order differential equation

ẋi(t) = ui(t), ∀i ∈ {1, . . . , N} (1)

where ui(t) ∈ R2 stands for the i-th control input.
The robots are responsible for servicing a collection of tasks

associated with specific locations qv ∈ W , v = 1, . . . ,m
in the environment. We assume that the tasks are announced
sequentially2 but they are not assigned a priori to robots and
we make no assumptions on the spacial distribution of the
targets in the workspace. Every new task is announced when
all previous tasks are being serviced, and it is assigned for
service to a unique robot called the leader of the network
through an on-line distributed process. Given an announced
task located at qv , servicing that task means that there is a
future time instant tv so that for all time t > tv there exists
a robot i that is always physically in the vicinity of that task,
i.e.,

‖xi(t)− qv‖ ≤ δ, ∀t ≥ tv (2)

where ‖·‖ represents the Euclidean norm, δ > 0 is an
arbitrarily small positive constant, and t refers to the current
time.

Along with servicing tasks, the robots also need to ensure
reliable communication with the APs and, for this purpose,
we employ the routing model presented in [11]. According
to this model, the communication channel between the i-
th robot and the j-th node (robot or AP) is captured by a
link reliability metric Rij(t) , R(xi(t),xj(t)) denoting the
probability that a packet transmitted by the robot at position xi
is correctly decoded by the node located at xj .3 The effective
transmission rate from i to j is equal to R0Rij(t), where R0

is the transmission rate of the robots’ radios. Additionally, let
rmin
i ∈ [0, 1] denote the normalized average rate at which

1Access points are information sinks responsible for collecting and pro-
cessing information generated individually by mobile robots.

2In practice, tasks can be announced at any rate and among the announced
tasks, the task to be serviced can be chosen based on various criteria, e.g.,
proximity-based or priority based criterion.

3The link reliability R(xi,xj) depends on path loss that is a function of the
distance between the source and the receiver, shadowing due to the existence
of obstacles in the propagation path, and multi-path fading due to reflections,
which are difficult to predetermine. A common model for R(xi,xj) is to
define it by a decreasing function of the distance between nodes i and j. This
model is often used in practice to address situations that are dominated by
path loss, see, e.g., [25].

3

information is generated by the i-th robot in packets per
unit time, which can be routed to the set of APs either
through a multi-hop path or directly if Rij(t) > 0 for some
j ∈ {N + 1, . . . , N +K}. Routing of information is modeled
using routing variables Tij(t) ∈ [0, 1] denoting the fraction of
time that nodes i and j communicate. Assuming that routing
of a packet and its successful decoding by another node are
two independent processes, we obtain that the normalized rate
at which information is sent from i to j is Tij(t)R0Rij(t).

The proposed communication model assumes that each
robot stores packets of information in a queue until they
are transmitted and successfully decoded by their intended
destinations. The average rate at which information leaves the
i-th queue is

routx,i (t) =

N+K∑
j=1

Tij(t)R0R(xi(t),xj(t)). (3)

Similarly, the average rate at which packets arrive at the i-th
queue is

rinx,i(t) = rmin
i (t) +

N∑
j=1

Tji(t)R0R(xj(t),xi(t)). (4)

Note that the APs can only receive information, which explains
the upper limits in the sums of (3) and (4). In order to
guarantee reliable communication with the set of APs, the i-th
queue should empty infinitely often with probability one, i.e.,

ci(x(t),T) , routx,i (t)− rinx,i(t) ≥ 0, (5)

for all robots i ∈ {1, . . . , N} and for all time t ≥ 0, where
T ∈ RN(N+K) is a vector that stacks the routing decisions
Tij of all robots. In what follows, for simplicity of notation
and without loss of generality, we assume that R0 = 1 for all
robots.

Based on the above formulation, the problem that we
address in this paper can be stated as follows:

Problem 1: Given m < N tasks announced sequentially
at locations qv ∈ W , v ∈ {1, . . . ,m}, determine robot
trajectories xi(t) and routing variables Tij(t) so that all tasks
are eventually serviced as defined in (2), the communication
constraints (5) are satisfied for all robots and all time t,
and collisions between robots and between robots and the
environmentW are avoided during deployment of the network.

To solve Problem 1 we develop a distributed, hybrid control
scheme that can dynamically grow tree networks rooted at the
APs that connect leaf nodes, i.e., robots that service a task, to
the main network structure. When a task is being serviced and
a new one is announced, a new branch junction is determined
from where an additional branch is grown in a distributed
way connecting a new leaf node to the network. To achieve
this goal, two leader teams are formed, namely, the primary
leader team and the secondary leader team. The primary
leader team is assembled when a new task is announced and all
the previously announced tasks are being serviced, and its goal
is to help the leader reach its destination. If the primary leader
team gets trapped at a local stationary point, then a secondary
leader team is assembled with the goal to assist the primary

leader team to ”escape” from that stationary point. To this
end, robots in either leader team adopt roles that drive them
to specific locations in space, hereafter denoted by ψi(t) ∈ W
defined in Section V. Navigation of robots towards ψi(t) is
based on the solution of a constrained convex optimization
program constructed in Section IV. The possible roles that
the robots of the primary leader team can have are either a
leader or a node, i.e., a robot that belongs to a branch of the
tree network. On the other hand, the robots that belong to
the secondary leader team can be leaf nodes, i.e., previously
elected leaders that are currently servicing past tasks, junctions
nodes located at branch junctions, simple nodes as in the
primary leader team, or recruits, i.e., previously redundant
nodes that are recruited to help the primary leader team escape
from a local stationary point. The robots switch between these
roles depending on the current stage of the task updating at the
same time the targets ψi(t). A schematic that illustrates the
sought network behavior is shown in Figure 1. The integration
of the role assignment process along with the optimization of
the routing variables and motion planning gives rise to the
proposed distributed hybrid control scheme.

Assumption 1: Throughout the rest of the paper we assume
that there is a sufficient number of redundant robots, i.e.,
robots without an assigned task, that can be recruited to
facilitate the leader in servicing its task.

Fig. 1. An illustration of our problem formulation and proposed solution. A
tree network that is rooted at the AP is constructed that connects leaf nodes
servicing tasks to the main network structure. At the same time, a new branch
rooted at a branch junction is growing so that the leader of the network can
reach an announced target.

III. DISTRIBUTED COMMUNICATION

In this section, we develop a distributed algorithm to com-
pute the routing variables Tij that satisfy the communication
constraints (5). Initially, we assume a given static network
configuration x, and in Section IV we extend this framework
to account for node mobility. Note that for a given spatial
configuration x, there may be various routing decisions Tij
satisfying (5). To ensure uniqueness of those routing decisions
Tij we introduce a strictly convex objective function Vij(Tij)
associated with the variables Tij . In particular, we solve the

4

following constrained optimization problem for the computa-
tion of the routing variables

minimize
T

N∑
i=1

N+K∑
j=1

Vij(Tij) (6)

subject to ci(x,T) ≥ 0,
N+K∑
j=1

Tij ≤ 1, 0 ≤ Tij ≤ 1, ∀j,

which for fixed robot positions x obtains a simple convex
form. In (6), the constraints hold for all robots i. We also
introduce the constraint

∑N+K
j=1 Tij ≤ 1 to ensure that the

sum of time shares at node i does not exceed 1. Finally, for
the strictly convex function Vij(Tij), we select Vij = wijT

2
ij ,

wij > 0, in order to encourage the distribution of the packets
over different links increasing in this way the robustness to
link failures [11].

Solving (6) in a centralized way can incur large communica-
tion cost and delays due to the need for identifying the network
topology and communicating it to the robots. Therefore, a
distributed solution is preferred, where (6) is solved locally
across the group of nodes. For this purpose, following the
steps in [11], we define the Lagrangian of (6) by

Lx(λ,T) =

N∑
i=1

N+K∑
j=1

Vij(Tij) (7)

+

N∑
i=1

λi

[N+K∑
j=1

TijR(xi,xj)−
N∑
j=1

TjiR(xj ,xi)−ri
]
,

where λ ∈ RN is a column vector of the Lagrange multipliers.
Then, the dual function is

gx(λ) = min∑N+K
j=1 Tij≤1, ∀i∈1,...,N

Lx(λ,T) (8)

and the dual problem becomes

Dx = max
λ≥0

gx(λ).

Since the optimization problem (6) is convex for fixed
robot positions, it holds that Px = Dx, where Px is the
solution of (6) for a network configuration x. Therefore, we
can equivalently work in the dual domain.

To implement a gradient ascent algorithm in the dual
domain, we need to compute the gradient of the dual function
(8). For this, define first the primal Lagrangian maximizers by

{Tx,ij(λ)}∀i,j = argmin∑N+K
j=1 Tij≤1

Lx(λ,T). (9)

Then, the i-th component of the gradient of the dual function
is given by

[∇gx(λ)]i =

N+K∑
j=1

Tx,ijR(xi,xj)

−
N∑
j=1

Tx,jiR(xj ,xi)− ri. (10)

Note that the Lagrangian defined in (7) can be expressed
as a sum of local Lagrangians Lx,i through reordering of its
terms, i.e.,

Lx(λ,T) =
∑N

i=1
Lx,i(λ,T),

where

Lx,i(λ,T) = −λiri

+

N∑
j=1

[Vij(Tij) + TijR(xi,xj)(λi − λj)]

+

N+K∑
j=N+1

[Vij(Tij) + λiTijR(xi,xj)] . (11)

Since the variables {Tij}Nj=1 appear only in Lx,i, instead
of minimizing the global Lagrangian, we can equivalently
compute the minimizers of the local Lagrangians defined in
(11), i.e.,

{Tx,ij(λ)}N+K
j=1 = argmin∑N+K

j=1 Tij≤1

Lx,i(λ,T). (12)

Finally, introducing an iteration index k and denoting by tk
the time instants at which the routing variables are updated,
we obtain the following distributed gradient ascent algorithm
in the dual domain:

Primal Iteration: For a given spatial configuration x(tk)
and Lagrange multiplies λ(tk), compute the Lagrangian max-
imizers {Tx(tk),ij}N+K

j=1 as:

{Tx,ij(tk)}N+K
j=1 = argmin∑N+K

j=1 Tij≤1

Lx(tk),i(λ(tk),T). (13)

Dual Iteration: Given the primal variables {Tx,ij(tk)}N+K
j=1

from (13), update the dual variables as:

λi(tk+1) = P
[
λi(tk) + ε

(N+K∑
j=1

Tij(tk)R(xi(tk),xj(tk))

−
N∑
j=1

Tji(tk)R(xj(tk),xi(tk))− ri
)]
, (14)

where P denotes the projection to the non-negative orthant.
Note, that the algorithm in (13)-(14) is distributed, since

it requires only the Lagrange multipliers λj [cf. (13)] and the
routing variables Tji [cf. (14)] from robots for which Rij 6= 0.

Remark 3.1 (Primal-Dual Decomposition): In the above
analysis, the dual subgradient method [28] was implemented
in order to compute the optimal routing decisions Tij for a
given network configuration x. More sophisticated primal-
dual decomposition algorithms, e.g., the Alternating Direction
Method of Multipliers (ADMM) [29], or the Accelerated
Distributed Augmented Lagrangian (ADAL) [30], can also
be used in lieu of the existing one, which enjoy faster
convergence rates.

5

IV. ROBOT NAVIGATION

As discussed in Section II, we propose a method to solve
Problem 1 where the robots adopt specific roles associated
with visiting or tracking a sequence of possibly temporary
targets located at ψi(tk) ∈ W and determined in a way that
allows the network to accomplish its assigned task. The selec-
tion of this sequence of targets ψi(tk) depends on coordination
between the robots and is discussed in Section V. In this
Section, assuming that such a sequence of targets ψi(tk) is
available, we discuss how to design robot trajectories so that
the communication constraints (5) are satisfied and collisions
with the environment and between robots are avoided while
the robots track their assigned targets ψi(tk).

To jointly address robot communication and mobility, we
propose a distributed control scheme that decouples these
two objectives and alternates between the optimization of
the two. In particular, assuming fixed robot positions x(tk),
every robot updates its routing variables at the time instants
tk via the distributed primal-dual algorithm (13)-(14). Then,
using the routing variables T(tk) obtained from the previous
step, every robot moves during the time interval (tk, tk+1)
towards a position xi(tk+1) that minimizes the distance from
its respective target ψi(tk). Note that the update (13)-(14)
ensures feasibility of the primal variables for a static network
as k →∞. However, for an arbitrary finite iteration index k,
the primal variables {Tij(tk)}N+K

j=1 computed via (13)-(14) are
not necessarily feasible. This situation is more pronounced in
the case of mobile networks, where due to mobility the optimal
solution of (6) drifts, and the primal-dual iteration (13)-(14)
tries to catch up. As a result, the communication constraints
ci(x(t),T) ≥ 0 may become violated as the robots move
from xi(tk) to xi(tk+1). To minimize constraint violations
and ensure that an acceptable quality of communication is
maintained, we require that every robot checks feasibility of
its local routing variables after every communication update.
4 Robots with infeasible routing variables remain stationary
until feasible routes are acquired through the iteration (13)-
(14). When this happens, those robots compute the next
positions xi(tk+1) in a direction that minimizes the distance
from their respective targets ψi(tk) and then start moving
towards these positions. In what follows, we discuss how the
robots compute their next positions xi(tk+1) so that collision
avoidance between them and with the workspace boundary is
guaranteed, respecting at the same time the communication
constraints (5).

A. Obstacle Avoidance

To avoid collisions with the boundary of the workspace W ,
denoted by ∂W , we need to exclude this polygonal boundary
from the free-space in which the robots are allowed to move.
Specifically, we define an obstacle region Wo ⊂ W where
collisions with the workspace boundary can occur by the set
Wo = {q ∈ W | ‖q − qb‖ ≤ ρ, qb ∈ ∂W}, containing all
points q ∈ W whose distance from the boundary ∂W is less
than a small positive constant ρ > 0. Then, the free space

4In practice, we only require that the constraints (5) satisfy ci(x,T) >
−cmin

i for some small positive constant cmin
i > 0.

Fig. 2. Graphical example of the Voronoi partitioning of the free space
Wf generated by two nodes. The boundary of the free-space Wf ⊂ W is
represented by the red dashed line. The green line stands for the geodesic
path s(x1(tk),ψ1(tk)) computed on Wf .

Wf is defined as Wf = W\Wo; see Figure 2. We defer the
detailed description of the construction of the free-space to
Appendix A. To enforce the constraint xi(tk+1) ∈ Wf , robot
navigation is performed along geodesic paths computed over
the space Wf defined as follows:

Definition 4.1 (Geodesic Path): The geodesic path
s(xi,ψi) between two points xi and ψi residing in a
polygonal environment Wf can be uniquely defined as the
shortest path between them entirely contained in Wf , i.e.,

s(xi,ψi) ={[xi,a1(xi,ψi)], [a1(xi,ψi),a2(xi,ψi)], . . . ,

[am−1(xi,ψi),am(xi,ψi)], [am(xi,ψi),ψi]},
(15)

where [al−1(xi,ψi),al(xi,ψi)] stands for the line segment
that connects the reflex vertices al−1(xi,ψi) and al(xi,ψi)
of the polygonal boundary of Wf .

As the robots switch targets ψi(tk) at time instants tk, the
geodesic paths need to be updated at every time instant tk.
Therefore, to reach the targets ψi(tk), the robots need to track
the reflex vertices a1(xi(tk),ψi(tk)) as defined in Definition
(4.1); see Figure 3. This gives rise to the optimization problem
for the new position xi(tk+1)

xi(tk+1) = argmin
xi∈Wf

‖xi − a1(xi(tk),ψi(tk))‖2 . (16)

B. Collision Avoidance

In what follows, we extend the solution of (16) to also
account for collision avoidance between neighboring robots.
For this, we decompose the free space Wf into disjoint cells,
so that each cell is assigned to a unique robot. Requiring the
robots always move in their assigned cells ensures collision
avoidance between them. By dynamically updating those cells
in a distributed way, we can guarantee that the robots are able
to eventually reach their targets ψi(tk). To decompose the
free-space Wf we employ the notion of the Voronoi diagram
defined as follows:

6

(a) (b)

Fig. 3. Graphical depiction of the geodesic path connecting a robot located
at xi(t) to its respective target ψi(t) residing in the free-space Wf at
time instants tk (Figure 3(a)) and tk+1 (Figure 3(b)). As the target ψi(t)
moves, the robot updates the geodesic path and tracks the reflex vertex
a1(x1(t),ψ1(t)).

Definition 4.2 ([31]): The Voronoi diagram generated by
a set of points located at {x1, . . . ,xN} is the set V =
{V1, ...,VN}, where Vi is called the Voronoi cell of node i
that contains all points that are closer to node i than to any
other node, according to the Euclidean distance metric, i.e.,

Vi = {q ∈ Wf | ‖q− xi‖ ≤ ‖q− xj‖ , ∀j 6= i}.

In view of the above definition, it is clear that the Voronoi
cells Vi are disjoint sets except at their boundary ∂Vi. Par-
ticularly, the polygonal boundary ∂Vi consists of edges that
either lie on the boundary ∂Wf or are shared with ∂Vj , for
some j 6= i, as depicted in Figure 2. Therefore, in order to
avoid collisions among the robots, we confine the motion of
the i-th robot inside its respective Voronoi cell excluding the
edges of ∂Vi that are shared with other robots. Note that since
the Voronoi partitioning of a non-convex environment may
contain disconnected cells, as in Figure 2, we need to discard
those disconnected components of Vi that do not contain the
current robot position xi(tk). In this way, we obtain connected
and disjoint subsets of the free space in which the robots can
move. These cells are, in general non-convex which can result
in con-convex constraints being added to (16).

To obtain convex collision avoidance constraints we con-
struct convex subsets of the above disjoint non-convex cells,
in which we now restrict the motion of the robots. In par-
ticular, we first construct an arbitrary convex polygonal set
denoted by Pi(tk) ⊆ Wf , that contains the part of the line
segment [xi(tk),a1(xi(tk),ψi(tk))] that is contained in the
non-convex cell in which robot i is allowed to move.5 Next
we define the half-space

Hei (tk) = {q ∈ R2 | aie(tk)Tq ≤ bie(tk) + ρie(tk)}, (17)

that points inside Vi(tk). In (17), aie(tk)Tq = bie(tk) repre-
sents the line equation of the e-th edge of the boundary of
the previously defined non-convex set that lies on ∂Vi ∩ ∂Vj .
Moreover, ρie(tk) are constants used to translate the e-th edge
so that the distance between the lines aie(tk)Tq = bie(tk) and
aie(tk)Tq = bie(tk) + ρie(tk) is equal to ρ > 0, for all edges

5Note that the line segment [xi(tk),a1(xi(tk),ψi(tk))] is not necessarily
contained entirely in Pi. This is, e.g., the case when the reflex vertex a1 is
located in the Voronoi cell of robot xj for j 6= i.

Fig. 4. Graphical example of the spaces that guarantee collision avoidance
for a network of two robots. Blue lines determine the Voronoi cells for each
robot, the yellow colored polygonal areas stand for the sets Ci as defined in
(18) and the green line stands for the geodesic path s(x1(tk),ψ1(tk)).

that lie on ∂Vi(tk) ∩ ∂Vj(tk), i 6= j, ∀i. Then, the convex
polygonal space Ci(tk) ⊆ Vi(tk) in which robot i is confined
to move is defined by the intersection of the set Pi(tk) with
the half-spaces Hei (tk), i.e.,

Ci(tk) = Pi(tk) ∩

Ei(tk)⋂
e=1

Hei (tk)

 , (18)

where Ei(tk) is the number of the half-spaces Hei (tk) defined
in (17). Taking the intersection of the set Pi with the half-
spaces Hei ensures that the boundary ∂Vi ∩ ∂Vj is removed
from the collision free cell in which robot i can move.
Requiring that

xi(tk+1) ∈ Ci(tk), (19)

ensures collision avoidance among the robots, since the inter-
robot distance will always be greater than or equal to 2ρ >
0. The resulting convex sets Ci(tk) for the robot network of
Figure 2 are depicted in Figure 4. Note that as the robots move,
the Voronoi cells Vi change, and so do the subsets Ci.

Notice that the proposed method employs a convex con-
straint (19) to ensure collision-free trajectories in complex en-
vironments, instead of using standard non-convex constraints
of the form ‖xi(t)− xj(t)‖2 > 0 as in [19]. Note also that
the construction of constraint in (19) requires only information
acquired by the set of Delaunay neighbors of robot i denoted
by Di, where Di = {j 6= i | Vi ∩ Vj 6= ∅ (non-singleton)}.6

Remark 4.3 (Non-point Robots): Throughout the paper, for
the sake of simplicity we consider point robots. However,
our proposed collision avoidance scheme can also account
for realistic non-point robots. For example, for robots that are
modeled by a disc of radius ∆, as in [19], [22], [23] it suffices
to choose the parameter ρ so that it satisfies ρ > ∆.

6Note that robot i is aware only of the Delaunay neighbors j ∈ Di for
which it holds Rij > 0, which implies that robot i may not know all its
Delaunay neighbors. Although this will lead to a wrong evaluation of the
respective Voronoi cell, it does not compromise the collision avoidance among
the robots. The reason is that, since Rij is associated with the inter-robot
distance, then Rij = 0 entails that the mobility of robots i and j cannot
result in their collision.

7

C. Motion Planning

As discussed before, the robots move during the time
intervals (tk, tk+1), between updates of the communication
variables. Incorporating the collision avoidance constraint (19),
and the communication constraint (5) into the optimization
problem (16), gives rise to the following constrained optimiza-
tion problem for the new position xi(tk+1) of robot i:

minimize
xi

‖xi − a1(xi(tk),ψi(tk))‖2 (20)

subject to ci(x,T(tk)) ≥ 0,

xi ∈ Ci(tk).

While the collision avoidance constraint in (20) can be
expressed as a set of linear constraints, since the set Ci(tk)
is a convex polygonal set, the communication constraint is
nonlinear due to the nonlinear dependence of the link reliabil-
ities Rij on the robot positions. To handle those nonlinearities
in (20) we employ a sequential convex programming approach
to solve the motion planning problem. Specifically, assuming
that all the other robots are fixed at positions xj(tk), for j 6= i
and given routing decisions T(tk), every robot i solves the
following convex problem:

minimize
xi

‖xi − a1(xi(tk),ψi(tk))‖2 (21)

subject to c̃i(xi, {xj(tk)}j 6=i,T(tk)) ≥ 0,

‖xi − xi(tk)‖ ≤ σ,
xi ∈ Ci(tk),

for the updated position xi(tk+1), where {xj(tk)}j 6=i are the
positions at time tk of robots j 6= i. Also, c̃i stands for a linear
approximation of ci defined as:

c̃i(xi, {xj(tk)}j 6=i,T)

= ci(x(tk),T) + (∇xi
ci(x(tk),T))T (xi(tk+1)− xi(tk)).

(22)

In (21) we have introduced a trust-region constraint for some
σ > 0, that defines a region where c̃i(xi, {xj(tk)}j 6=i,T(tk))
is an acceptable approximation of ci(x(tk),T(tk)). In general,
the smaller the size of the trust region is, the more accurate
these approximations are. Solving (21) for the new robot
positions we obtain the controller ui(t) for robot i

ui(t) =
xi(tk+1)− xi(tk)

∆t
, ∀t ∈ (tk, tk+1), (23)

s which is a discrete-time version of the model discussed in
(1).

Remark 4.4 (Collision Avoidance): In the analysis pro-
vided above, we chose not to model collision avoidance
using the standard nonlinear constraints ‖xi(t)− xj(t)‖2 > 0,
which we could then linearize, as we did with the nonlin-
ear communication constraints (5). The reason behind this
approach is that, in general, linearization of the constraints
is an approximation that may introduce constraint violation.
Although violation of the communication constraints can be
handled efficiently ensuring reliable communication among the
robots, as discussed at the beginning of Section IV, this is not

the case for the collision avoidance constraints which cannot
be ‘recovered’ once they are violated.

V. DISTRIBUTED COORDINATION

In this section, we develop a distributed coordination
scheme, which combined with the communication and naviga-
tion controllers discussed in sections III and IV, dynamically
grows a tree network structure, rooted at the access points,
with branches that connect leaf nodes responsible for servicing
individual tasks to the main network structure. Specifically,
each time a new task is announced by a user, a new branch
is grown in the network rooted at a branch junction that
maintains connectivity with the rest of the network structure.
To achieve this goal, two leader teams are formulated, namely,
the primary and the secondary leader team, which we discuss
next. The result of this coordination mechanism are sequences
of targets ψi(tk) that the robots need to track in order to
construct those tree networks that will allow the team of robots
to achieve their goal. These sequences of targets constitute the
input to the motion controller that was presented in Section
IV.

A. Primary Leader Team

1) Leader Election: Assume that a tree network already
exists, as in Figure 1, and that a new task is announced at
position qv in the environment. Then, the team of robots
coordinates to elect a leader robot that will be responsible for
servicing that task. The leader election process is a distributed
process that is shown in Algorithm 1. During this phase of
coordination, every robot i in the network initializes a vector
of bids di = [0, . . . , [di]i, . . . , 0] ∈ RN with all entries
equal to zero except for the i-th entry, denoted by [di]i, that
contains the bid of robot i. The bid [di]i can be associated
with the geodesic distance from the target.7 Along with the
vector of bids, robot i also initializes a vector of tokens as
φi = [0, . . . , 1, . . . , 0] ∈ {0, 1}N , so that the i-th entry of this
vector [φi]i = 1 indicates that the robot has placed a bid, while
entries [φi]j that are zero indicate that robot i is unaware of
bids having been placed by other robots j 6= i. The leader
election process depends on setting up a distributed auction,
where there is no central auctioneer, so that bids placed by the
robots are compared against each other. Specifically, the i-th
robot communicates its vector of bids di ∈ RN and tokens φi
[line 2] to its neighboring robots j ∈ Ni = {j|Rij > 0} and
updates those vectors through a max consensus process [lines
3-4] every time a new communication message is received.
When every robot has collected the bids from all robots,
i.e., when minj{[φi]j} = 1, the robot that has placed the
maximum bid, i.e., the robot with index argmaxj{[di]i} will
become the leader denoted by `(t) [line 6]. In case of ties
in the bids, the robot with the highest index will become the
leader, i.e., the robot with index max{argmaxj{[di]i}}.

7For instance, bids can be associated with the reciprocal of the geodesic
distance to the announced task. In this way, the closest robot to the announced
task will eventually be elected.

8

Algorithm 1 Leader Election
Require: di and φi;

1: if minj{[φi]j} = 0 then
2: Propagate bids and tokens;
3: φi := maxj∈Ni

{φi,φj};
4: di := maxj∈Ni

{di,dj};
5: else
6: `(t) := max{argmaxj{[di]i}};
7: end if

2) Local Stationary Points: Now, consider that a leader
has already been elected and begins to move towards its
assigned task at position qv . Since, it might not always be
possible for the leader to service its assigned task due to
the imposed communication constraints (5), a primary leader
team needs to be assembled that will facilitate the leader
to accomplish its goal. We denote this team of robots by
P(t). Initially, the primary leader team consists only of the
leader, i.e., P(t) = {`(t)}. While the local communication
constraint associated with the leader is satisfied, the leader
moves towards its assigned target. However, when the local
communication constraint tends to become violated, the leader
stops. This situation corresponds to a local stationary point
of the networked system. In this case a new member should
join the primary leader team, without violating connectivity
of the network, in order to release the leader from this local
minimum and allow it to move further. This is achieved via
a recruit election process that allows the leader to recruit
a robot from a set of possible recruits for assistance.8 The
recruit election process is conceptually similar to a leader
election. I.e., it involves bids placed by potential recruits and
local auctions to compare those bids. What is different is
the set of robots that can participate in a recruit election.
Specifically, only redundant robots can participate in a recruit
election, i.e., robots without an assigned task. In particular,
we define redundant robots to be those robots that have never
won a recruit or a leader election.9 The set of redundant
robots is denoted by R(t). In a recruit election process, all
robots i ∈ R(t) place a bid in order to become a recruit
that is associated with the residuals ci(th) so that large bids
correspond to large residuals. Here th denotes the time instant
at which the most recent recruit election process was triggered.
In this way, the robot with the largest residual at the time
th at which the network trapped at local stationary point,
will eventually be elected. The reason for defining the recruit
election bids in this way is that large residuals imply more
free space for a robot to move. The elected redundant robot
is called the recruit and is denoted by h.

Upon the election of the recruit, the robots should cooperate
so that the leader gets untrapped from its local stationary point.

8Note that potential recruits can be physically located far away from the
leader, therefore, it might not be easy to recruit them without a specialized
procedure.

9Initially, when no tasks are announced, all robots are considered redundant,
since there is no task assigned to them. When a robot wins a leader or a recruit
election, it is no more considered redundant as at that point a task is assigned
to the elected robot.

The end goal is to add a new member to the primary leader
team P(t) that will allow the leader to continue to move
towards its assigned task. This should happen without violating
end-to-end connectivity of the network. The coordination
process that results in a new member joining the primary
leader team is discussed in Section V-B. As the primary leader
team continues to move towards the announced task, it either
reaches this task or it stops at another local stationary point
defined as the situation where any motion of the last node that
joined the primary leader team will violate connectivity of the
network. In this case, a new recruit election takes place and a
new member is eventually added to the primary leader team.

Local stationary points are not only due to violation of
the communication constraints by any motion of the primary
leader team, but also due to situations where the newly elected
leader has another role in the network that is critical for the
mission. For example, the newly elected leader can hold a
position in space where the presence of a node is necessary
to ensure network connectivity, or the newly elected leader
could have also been a leader in the past, in which case its
current role is to remain in close proximity to its previous
assigned task. In such situations, the new leader cannot move
at all, until it is released from its past duties. To resolve the
conflict in the roles of the elected leader, a recruit election is
triggered directly after the leader election and the robots in the
network coordinate to release the leader from its past duties.
The end goal in this coordination process is to physically
replace the leader in the workspace, so that the leader is
released from its past duties; see Section V-B. When this
happens, the leader continues to move towards the announced
task and it either reaches it or stops at a local stationary point
due to the communication constraints. The latter case results in
adding a new member to the primary leader team, as discussed
previously.

3) Coordination within the Primary Leader Team: The
process of adding new members to the primary leader team
results in a new branch growing from the network with the leaf
node corresponding to the leader. Branches are connected to
the rest of the network at nodes called the junction nodes. All
nodes belonging to the new branch, excluding the junction
node, constitute the primary leader team. The ordered set
P(t) is constructed so that the first robot that joins the
primary leader team is always the last entry of P(t) and
correspondingly, the last robot that joins this team is the first
entry of P(t). Consequently, the last entry of P(t) is always
the leader, since this is the first robot that joins P(t) upon its
election; see Figure 5(a). Denoting by pi(t) the i-th member of
P(t) we conclude that a recruit election is triggered by robot
p1(t), which is the last robot that joined the primary leader
team, when it is stuck due to the violation of communication
constraint cp1(t) ≥ 0.

The robots in the primary leader team move as follows.
Every member of the primary leader team follows the next
robot in P(t) except for the leader, which moves towards the
task located at qv , i.e.,

ψpi(t) =

{
qv if pi(t) = `(t)

xpi+1(t) otherwise
. (24)

9

The primary leader team is said to have accomplished its
goal when the leader is servicing the announced task, i.e.,
when (2) holds. Note that the tree network constructed by the
above process is only a subgraph of the actual communication
network between the nodes, and other communication links
that do not belong to the tree network can exist due to the
proximity between nodes; see, e.g., Figure 6. The communi-
cation network and the tree network are defined as follows:

Definition 5.1 (Communication Network): The communi-
cation network is defined as a dynamic directed graph
Gc(t) = (Vc, Ec(t)), where Vc = {1, 2, . . . , N, . . . , N +K}
and Ec(t) = {(i, j)|i, j ∈ V}, where a communication link
between i and j exists if and only if TijRij > 0.

Definition 5.2 (Tree Network): The tree network is defined
as a dynamic directed graph Gt(t) = (Vt, Et(t)), which is
constructed by the coordination process presented in Section
V. The tree network is a subgraph of the actual communication
network, i.e., Vt = Vc and Et(t) ⊆ Ec(t).

Remark 5.3 (Leader election): Allowing every robot in the
network to participate in the leader election entails that the
closest robot to the announced task will eventually be elected.
In doing so, we achieve a more efficient utilization of available
resources, i.e., nodes, since we avoid situations where new
branches are grown from locations far away from the new
task and run in parallel with the existing network structure.

Remark 5.4 (Recruit election): When the primary leader
team needs to trigger a recruit election, robot p1 transmits
a message to its neighboring robots j ∈ Np1 . This message
is propagated in the network until all the redundant robots
that are connected through a multi-hop path to the leader are
aware that a new recruit is needed. When this happens, a
recruit election follows. Then, the elected recruit h transmits
a message that eventually reaches robot p1 to inform it about
the recruit election result.

B. Secondary Leader Team

The secondary leader team is a team of robots that facili-
tates the primary leader team to move towards its task when
the latter is trapped at a local stationary point. Essentially,
the secondary leader team is a team of robots that collaborate
to transfer the assistance that the recruit can provide to the
primary leader team, while ensuring that network connectivity
is preserved.

1) Coordination within the Secondary Leader Team: As-
sume that the primary leader team is trapped at a local station-
ary point. Assume also that a recruit has already been elected.
Then by definition the robots that can assist in transferring
the recruit’s help to the primary leader team are the ones that
belong to the shortest path in the tree network that connects
the recruit h to robot p1(t) ∈ P(t).10 The indices of these
robots are collected in an ordered set denoted by Σ(t). The
order is determined as follows. Denoting by si(t) the i-th
entry of Σ(t), we assume that s1(t) is the recruit and for
every i, robot si+1(t) is the next-hop robot following si(t)

10Since we refer to the tree network, the path that connects the recruit
and robot p1(t) ∈ P(t) is unique and can be computed through applying a
distributed shortest path algorithm.

(a) Lb = 0

(b) Lb = 1

Fig. 5. Graphical depiction of breaking the group of robots in Σ into
subgroups when Lb = 0 (Figure 5(a)) and Lb = 1 (Figure 5(b)). In both
cases, the leader team S1 moves first and upon its convergence the leader
team S2 starts moving. When all the members of the latter converge to their
destinations, the primary leader team has received the required assistance
and can start moving. Specifically, in Figure 5(a), the robot s7 will join the
primary leader team and will start following the robot p1 that triggered a
recruit election. As for Figure 5(b), the robot s4 releases the leader from its
past role through replacing it in the workspace and then the leader can start
moving.

in the aforementioned path, until reaching robot p1(t). The
construction of Σ(t) is also illustrated in Figure 5. Then, the
secondary leader team is defined as S(t) = Σ(t) \ {p1(t)},
where p1(t) ∈ P(t).

The robots of the secondary leader team, i.e., the robots in
Σ(t) move towards the next robot in the set Σ(t), in a similar
way as those in P(t). Specifically, robot si ∈ Σ(t) moves
towards the position occupied by robot si+1 at time instant
th and in doing so, eventually, the primary leader team will
receive the required assistance. Thus, the target ψsi for robot
si ∈ S(t) is given by

ψsi = xsi+1
(th), (25)

10

Fig. 6. Graphical example of a tree network structure (gray edges) and the
respective underlying communication graph (gray and red edges).

where xsi+1 is the location of robot si+1. The reason that
we use the time instant th, i.e., the time instant at which the
most recent recruit election process was triggered, in (25) is
because at this time instant all robots in Σ(t) are in a feasible
configuration meaning that the communication constraints are
satisfied.

2) Decomposition of Secondary Leader Team: The sec-
ondary leader team may include leaf nodes, i.e., prior leaders,
that service tasks in the workspace and/or junctions nodes that
connect branches to the main network structure; see Figure 5.
To avoid violating end-to-end connectivity and interrupting the
service of a task, which could happen if a junction node or a
leaf node moved without having been replaced first by another
robot, we further decompose the secondary leader team into
subgroups of robots. Among those subgroups only one can
move at a time and in doing so, we guarantee end-to-end
connectivity for all time and uninterrupted service of tasks.
The decomposition of Σ(t) into subsets is based on identifying
break points in Σ(t), i.e., robots that cannot move without
having been replaced first by another robot. These break points
consist of the junction nodes and leaf nodes contained in Σ(t).
Also, in case a recruit election has been triggered due to a
conflict in the roles of the elected leader (see Section V-A),
then, the leader should also be a break point in the path Σ(t).
The reason is that in this case, similar to a junction and leaf
node, the leader needs to be ‘unlocked’ before it starts moving,
as discussed in Section V-A; such a case is depicted in Figure
5(b). In order to determine whether the leader should be a
break point or not, we introduce a binary variable Lb ∈ {0, 1}.
In particular, we set Lb = 1 if a recruit election was triggered
due to a conflict in the roles of the elected leader and Lb = 0,
if a recruit election was triggered by robot p1 due to violation
of its local communication constraint.

The set B(t) = [b1(t), . . . , bv(t)] of all break nodes in Σ(t)
determines the starting and the end nodes of each subgroup of
robots in S. Specifically, we select b1(t) = s1 = h, and the
rest of the entries in B are occupied by the junction and the
leaf nodes in the order that they appear in Σ(t). The last entry
is occupied by the leader if Lb = 1. Given the set B(t), we
have that the β-th subgroup of the secondary leader team S(t),
is a sequence of robots starting from robot si(t) = bβ(t) and
ending at robot sj−1(t), where sj(t) = bβ+1(t). We denote

the β-th subgroup by Sβ(t) = [bβ(t), bβ+1(t))Σ, where the
subscript Σ means that the sequence of nodes starting at bβ(t)
and ending with bβ+1(t) is taken from Σ(t) and the right open
interval means that bβ+1(t) is not included in Sβ(t). Therefore,
the total number of subgroups Sβ(t) is |B(t)| − 1, where |·|
stands for the cardinality of a set. Note that the last node in
B(t) is not a member of any subgroup Sβ(t); see Figure 5. As
it will become clear in the following section, this robot either
joins the primary leader team in order to help it move further
or is the leader that needs to be replaced due to a conflict in
its assigned roles.

C. Active Leader Team

As discussed in Section V-B, given the available subgroups
Sβ(t), we require that only one of them can move at a time.
This will ensure end-to-end connectivity and uninterrupted
service of tasks. Specifically, the robot group Sβ+1(t) is
allowed to move as soon as all the members of Sβ(t) have
reached their goals, i.e.,∥∥xsi(t)−ψsi∥∥ ≤ δ, ∀si(t) ∈ Sβ(t), (26)

for a sufficiently small δ > 0. When the last subgroup of
robots of the secondary leader team has reached its goal, the
primary leader team receives the required assistance to move
further.

1) Escaping from Local Stationary Points: To understand
how the primary leader team is eventually assisted to move
further, we examine the two cases for which a recruit election
is triggered. First, assume that a recruit election is triggered
because robot p1 cannot move further due to the communi-
cation constraints, i.e., Lb = 0. Such a case is depicted in
Figure 5(a). As soon as a recruit is elected, the first subgroup
S1 = [b1, b2)Σ of the secondary leader team is constructed
and begins moving towards targets defined by (25). When
the robots in this subgroup have reached their goals, the next
subgroup S2 = [b2, b3)Σ is assembled and begins its motion.
This procedure is repeated until the last subgroup of the
secondary leader team converges to its desired configuration.
When this happens, the last node in B joins the primary leader
team P with the task to start following the robot p1 that
triggered a recruit election as dictated by (24).11 A similar
reasoning applies also when a recruit election is triggered
because of a conflict in the roles of the elected leader, i.e.,
Lb = 1; see Figure 5(b). The only difference lies in the fact
that when all robots in the last subgroup have reached their
destinations, the last robot in this team will occupy the position
of the leader releasing it so that the leader can move freely
towards its goal. In our proposed algorithm, at any time, either
a subgroup of the secondary leader team or the primary leader
team is allowed to move. The team of robots that moves at time
t is called the active leader team denoted by A(t). The active
leader team is determined by Algorithm 3, while Algorithm 2
summarizes the target points assigned to every robot in A(t),
as per Sections V-A and V-B.

11When this happens, the primary leader team P(t) is updated and, as a
result, the robot that just joined the primary leader team is now the robot with
index p1. Accordingly, the other members of P(t) update their indices pi.

11

Algorithm 2 Selection of target ψi(t)
1: if A(t) ≡ P(t) then
2: if pi(t) = `(t) then
3: ψpi = qu;
4: else
5: ψpi(t) = xpi+1(t);
6: end if
7: else if A ≡ Sβ then
8: ψsi = xsi+1

(th);
9: end if

2) Distributed Construction of A(t): In the rest of this
section, we focus on how a robot can determine if it belongs
to the active leader team A(t) in a distributed way. This
procedure consists of two main phases. In the first phase,
every robot has to determine if it belongs to the secondary
leader team. All robots that belong to the secondary leader
team compute the subgroup Sβ(t), in which they belong and
the second phase follows. In the second phase, all robots
i ∈ Σ(t) ∪ P(t) check if A(t) coincides with the primary
leader team or a subgroup of the secondary leader team; see
Algorithm 3. These two phases are discussed next in detail.

At the beginning of the first phase, robot p1(t) ∈ P(t) that
triggered a recruit election computes the set Σ(t), i.e., the
path in the tree network that connects itself to the recruit.
Then, it transmits the set Σ(t) to the neighboring robots
that belong to Σ(t), i.e., to robots j ∈ Np1(t) ∩ Σ(t). This
process is repeated by the last robot that receives the set Σ(t)
until the communication message is received by the elected
recruit h. In this way, every robot knows if it belongs to
Σ(t). Next, every robot si(t) ∈ Σ(t) determines the subgroup
Sβ(t) in which it belongs. To achieve this, the robots in Σ(t)
need to determine the set of break points in B(t). This is
done in a distributed way using a max-consensus algorithm.
In particular, every robot si(t) transmits to its neighboring
robots in Σ(t) a vector rsi , whose entries are initially all
negative (any number) except for the i-th entry, denoted by
[rsi]i ∈ {0, 1}, that determines whether robot si is a break
point or not. Specifically, we assume that [rsi]i = 0, if robot si
is not a break point and [rsi]i = 1 otherwise. Then, every robot
si updates its associated vector rsi through a max-consensus
process, i.e., rsi = max{rsi , rsj}, sj ∈ Σ(t) ∩ Nsi(t) until
all its entries have non-negative values. When this happens,
every robot si ∈ Σ(t) is aware of the break points B and the
subgroup Sβ(t) to which it belongs.

The second phase of the process involves the robots deter-
mining the active leader team and updating it in a distributed
fashion when needed. The active leader team is initialized to
be the primary leader team upon the election of leader [line 15,
Alg. 3]. As soon as a recruit election is triggered, the active
leader team becomes the first subgroup of the secondary leader
team [lines 1-13, Alg. 3]. Once the robots in this subgroup
reach their destinations, the active leader team is updated to
the next subgroup and the process continues until the robots in
the last subgroup have reached their destinations [lines 11-13,
Alg. 3]. At that point, the active leader team switches back

Algorithm 3 Computation of the Active leader team A(t)

Require: Σ(t), B(t), P(t) ;
1: if recruit Election then
2: if ∧sj∈S|B|−1

([tsj]j = 1) then
3: if Lb = 0 then
4: P(t) = [bβ+1(t);P(t)];
5: end if
6: Go to 15;
7: else
8: Sβ(t) = [bβ(t), bβ+1(t))Σ;
9: end if

10: A(t) := Sβ(t);
11: if ∧sj∈A([tsj]j = 1) then
12: β := β + 1;
13: end if
14: else
15: A(t) := P(t) ;
16: β := 1
17: end if

to the primary leader team [lines 2-9, Alg. 3]. To determine
when a subgroup Sβ has converged, we again employ a max-
consensus algorithm. Particularly, each robot si(t) ∈ A(t)
is associated with a vector tsi ∈ {0, 1}|A| with zero entries
initially. When the si-th robot has accomplished its goal, i.e.,
when it has reached its destination, it updates the i-th entry of
tsi , denoted by [tsi]i, from 0 to 1. At the same time, the robots
in A communicate and update their respective vectors tsi
through a max-consensus process, i.e., tsi = max{tsi , tsj},
sj ∈ A(t) ∩ Nsi(t). When all entries of tsi have become
equal to 1 for all robots in A(t), then the active leader team is
updated. In this way, Algorithm 3 can be run in a distributed
fashion across the robots of the network.

Remark 5.5 (Relationship between δ and ρ): To ensure
both satisfaction of the collision avoidance constraint
defined in (19) and task accomplishment defined in (2),
we need to choose the problem parameters δ and ρ so that
δ ≥ max{2ρ, ρ} = 2ρ. To see this, recall first that the robots
move in the free space Wf . Thus, the distance between
any robot and any point q ∈ ∂W is always greater than
or equal to ρ. Thus, if ψi ∈ ∂W , then we need δ ≥ ρ in
order to ensure task accomplishment. Also, recall that the
collision avoidance constraint (19) ensures that the inter-robot
distance is always greater than or equal to 2ρ. Following
a similar reasoning as previously, in case a robot needs to
replace another robot in the workspace, we need δ ≥ 2ρ.
Thus, δ ≥ max{2ρ, ρ} = 2ρ should hold in order to ensure
successful task accomplishment respecting at the same
time the collision avoidance constraints. Also, the problem
parameters δ and ρ can be selected to be arbitrarily small
as long as it holds δ ≥ 2ρ in order to ensure that robots
approach sufficiently close their respective targets.

D. Switching of Robot Roles within the Active Leader Team

In this section, we discuss how the robots in the active leader
team switch between different roles. These roles are, namely,

12

a junction node, a leaf node, a redundant node, a node, and a
leader. First, we examine the case where the active leader team
is a part of the secondary leader team and then we discuss the
case where the active leader team is the primary leader team.

Assume that the active leader team is a subgroup of the
secondary leader team and consider that Lb = 0. Then every
robot si ∈ A(t) moves towards the target ψsi = xsi+1

(th)
as per equation (25). Once the robot si reaches its ψsi ,
it adopts the role that node si+1 had at the time instant
th [line 4, Algorithm 4]. When this happens, robot si+1 is
released from its past role and its new duties are dictated
by whether it still belongs to the active leader team, i.e.,
whether si+1 ∈ A(t) [line 6, Algorithm 4]. In this way, it is
guaranteed that there is always a robot present at the branch
junction locations ensuring that connectivity in the network
is preserved. To illustrate this fact, consider Figure 5(a) and
assume that A = S2. Once robot s6 reaches the location of
robot s7, it will become the new junction node, releasing s7

from its past role as the junction node. Once released, robot
s7 joins the primary leader team and obtains a new role to
track a target determined by (24); see Section V-C.

Now, assume that Lb = 1, i.e., that the new leader has a
conflict with its past role in the network. In this case, the new
leader belongs to the set S. Assume that the leader is robot
si+1. Then, robot si moves towards the leader si+1. Once
robot si reaches the leader, it does not adopt the role of a
leader. Instead, it becomes a junction node from where a new
branch will grow that will assist the leader in accomplishing
its goal [line 12, Algorithm 4]. Once si becomes a junction
node, the leader is released from its prior duties and begins
moving towards its goal [line 13, Algorithm 4]. The other
members of the secondary leader team update their roles as
previously discussed [lines 15-18, Algorithm 4]. To illustrate
this behavior, consider Figure 5(b) and assume that the active
leader teamA is the set S2. When the robots inA have reached
their destinations, the robot s4 will become a junction node
located at the position where the leader was originally present.

In case the active leader team is the primary leader team, all
robots pi ∈ A(t) except for the leader retain their respective
roles, i.e., the role of a node for all time [line 27, Algorithm
4]. Regarding the leader, as soon as it accomplishes its task as
defined by (2), it becomes a leaf node in the tree network [line
25, Algorithm 4]. The integrated distributed hybrid system
resulting from the combination of motion planning, commu-
nication control, and distributed coordination, is illustrated in
Algorithm 5.

Remark 5.6 (Switching between redundant and simple nodes):
We consider the following two cases: (i) It is possible that
redundant robots are critical in routing the information back
to the APs. This case occurs when the tree network is not
directly connected to the AP, i.e., when redundant robots
are necessary for establishing a multi-hop communication
path between the tree structure and the AP. Such a scenario
is depicted in Figure 7. In this case, the robots that belong
to this communication path become nodes. In case there
are more than one such communication paths, as in Figure
7, we choose the one that contains the most reliable links.
(ii) Additionally, it is possible that there are nodes that are

Algorithm 4 Update of role for robot i ∈ A(t)

1: if A(t) ≡ Sβ(t) then
2: if Lb = 0 then
3: if

∥∥xsi −ψsi∥∥ ≤ δ then
4: si adopts the role that robot si+1 had at th;
5: if si+1 is junction node then
6: si+1 becomes a node;
7: end if
8: end if
9: else if Lb = 1 then

10: if
∥∥xsi(t)−ψsi∥∥ ≤ δ then

11: if si+1(t) ≡ `(t) then
12: si(t) becomes a junction node;
13: ` is released from past duties;
14: else
15: si adopts the role that robot si+1 had at th;
16: if si+1 is junction node then
17: si+1 becomes a node;
18: end if
19: end if
20: end if
21: end if
22: end if
23: if A(t) ≡ P(t) then
24: if pi = ` then
25: pi becomes a leaf node if task is being serviced;
26: else
27: pi keeps being a node in P(t);
28: end if
29: end if

eventually not critical in the end-to-end network connectivity,
i.e., information is not routed through them to APs. To
illustrate this point, consider a leaf node i and a node j
that both belong to the same branch of the tree network and
assume that communication of leaf node i with an AP is
attained through the node j, i.e., RijTij 6= 0. Assume also
that due to the evolving network topology the optimal routing
decision Tij computed by (13) may eventually become 0,
i.e., the leaf node i may decide to route information back to
the APs through another node that belongs to a new branch.
In this case, this means that node j can now be considered
redundant.

E. Correctness of Proposed Distributed Control Scheme

Correctness of the proposed distributed control scheme is
guaranteed by its construction, as presented in the previous
sections. Specifically, assume N mobile robots in a complex
environment W , which move as per Algorithm 5 to service
tasks that are announced sequentially. Then, provided a solu-
tion to the problem exists, i.e., provided there is a sufficient
number of robots that can service the tasks, these tasks will be
completed (local stationary points will be avoided), collisions
between robots or between robots and the environment will be
avoided, and reliable communication with the infrastructure of
access points will be maintained.

13

Fig. 7. An illustration of a case where a redundant robot needs to switch
its role to a node. Due to the leader’s mobility, a tree network structure is
developed consisting of a node and a leaf node, whose connection to the AP
is attained through redundant robots. In this case, the redundant robot that is
marked with yellow color switches its role to a node.

Algorithm 5 Distributed Hybrid Control at Robot i
1: for k = 0 to ∞ do
2: Compute the routing variables {Tij}N+K

j=1 via the
primal-dual iteration algorithm [13]-[14];

3: if i ∈ A(t) [Algorithm 3] then
4: if ci(x(tk),T(tk)) ≥ 0 then
5: Select target ψi [Algorithm 2];
6: Compute geodesic path to target ψi;
7: Compute next position xi(tk+1) via the optimiza-

tion problem (21);
8: Move towards xi(tk+1) according to (23);
9: Update the role [Algorithm 4];

10: else
11: Stay motionless;
12: end if
13: else
14: Stay motionless;
15: end if
16: end for

To show this result, assume that a new unserviced target
has been announced and that a leader has been elected via
Algorithm 1 giving rise to the formation of a primary leader
team defined in sections V-A2 and V-A3. When the primary
leader team is trapped at a local stationary point due to the
communication constraints, as discussed in Section V-A2, a
recruit election is triggered that results in a new member
joining the primary leader team that in turns provides room
for the leader to move towards its goal, as discussed in Section
V-C1. If there is a sufficient number of redundant nodes,
then a sufficient number of recruits will be elected to help
the leader accomplish its task as per the coordination scheme
presented in sections V-B and V-C. Otherwise, the leader will
not service the task because of insufficient number of available
robots. Since the proposed scheme generates tree networks
with branch junctions located the closest to the new announced
tasks, cycles are avoided and so are long branches that run
in parallel to the existing network structure, resulting in an
efficient utilization of resources.

Moreover, during evolution of the network, communication
of all robots with the APs is guaranteed for all time either
via a multi-hop path or directly. The reason is that the

communication constraints guarantee connectivity within the
active leader team while switching of the active leader team
is performed so that there is no disconnection at the junction
nodes; see Section V-B2. Therefore, communication with the
APs is always guaranteed. Furthermore, as mobility respects
the communication constraints an acceptable quality of com-
munication is maintained during evolution of the system.
Finally, collisions between robots and the environment, or,
collisions between robots is guaranteed by construction of the
collision avoidance frameworks presented in sections IV-A and
IV-B and the use of geodesic paths for motion planning, that
locally ‘convexify’ planning in the vicinity of every robot.

VI. SIMULATION STUDIES

In this section, two simulation studies are presented to
illustrate our proposed method. All optimization problems
are solved in Matlab using the CVX toolbox [32]. In both
simulation studies, the channel reliability R(xi,xj) is modeled
as a decreasing function of the distance between nodes i and
j, i.e.,

R(xi,xj) =


1 if ‖xij‖ < l∑3
p=0 ap ‖xij‖

p if l < ‖xij‖ ≤ u
0 if ‖xij‖ > u

, (27)

where ‖xij‖ = ‖xi − xj‖ and the constants ap, p = 0, . . . , 3
are chosen so that R(xi,xj) is a differentiable function. The
model in (27) is a polynomial fitting of experimental curves
found in the literature [25]. In practice, an accurate estimation
of the channel reliability is hard to obtain, as it depends on path
loss that is a function of the distance between the transmitter
and the receiver, shadowing effects due to the existence of
obstacles in the propagation path, and multi-path fading effects
due to reflections and refractions of the electromagnetic waves,
which are difficult to predetermine. It is shown in [25] that on
the average R(xi,xj) is a decreasing function of the distance
between nodes, which validates the model (27) used here.
Also, the rates ri are assumed to be common for all robots
and equal to 0.075.

The first simulation study concerns a mobile robot network
consisting of N = 13 robots and K = 1 AP residing in a
complex environment whose convex hull has diameter equal
to 3.1 units. The parameters l and u in (27) are selected to
be 0.4 and 0.5 units, respectively . The position of the AP is
x14 = [0.5, 0.2] and the robots are initially deployed as shown
in Figure 8(a). Figures 8, 14 and 10 show the evolution of
the network when the first, second, and third target has been
announced, respectively.

Once the first target is announced at position q1 =
(1.33, 1.42), a leader is elected and starts moving towards the
target see (Figure 8(a)). When the leader is trapped at a local
stationary point, a recruit election is triggered by the leader
and as a result, a new member joins the primary leader team, as
shown in Figure 8(b). At a later time instant, the primary leader
team is trapped again due to the presence of communication
constraints. As before, a recruit election is triggered and a
new robot joins the primary leader team; see Figure 8(c).
Eventually, the target is serviced as shown in Figure 8(d).

14

(a) Time k = 1 (b) Time k = 700

(c) Time k = 900 (d) Time k = 1084

Fig. 8. Simulation Study I: Evolution of the communication network when
the first target (blue cross) is announced. Figures 8(a) through 8(d) show the
evolution of the system at different time instants. Green lines represent the
communication links among the robots while red lines depict the constructed
tree network. Their thickness depends on the value of TijR(xi,xj), i.e.,
thicker lines capture higher values. The blue rhombus represents the AP, the
yellow square illustrates a junction node, the red star stands for the leader
and the orange dots for the rest members of the primary leader team. The
redundant robots are depicted by black dots and the green rhombus represents
a leaf node, i.e., a robot that services a target.

Notice also in Figure 8(d) that a redundant robot has switched
its role to a node, as discussed in Remark 5.6.

When the first target has been serviced, a second target is
announced at position q2 = (1.6, 0.52) and is followed by
a new leader election; see Figure 14. Observe in Figure 8(d)
that there is a conflict in the roles of the elected robot, since
before its election, it belonged to a branch of the tree network.
Therefore, the leader triggers a recruit election and, as a
result, a secondary leader team is formed that aims to ‘unlock’
the leader; see Figure 9(a). When the leader is released, a
junction node is developed from which a new branch is grown.
Next, the leader starts moving towards its target until its
communication constraint tend to become violated. At that
point, a recruit election is triggered again by the leader. When
the robots in the secondary leader team have reached their
destinations, a new robot joins the primary leader team as
shown in Figure 9(c) and the leader is now free to reach its
target; see Figure 9(d).

Finally, a third target is announced at position q3 =
(2.21, 0.5); see Figure 10. When this happens, a new leader
election occurs and the elected leader is a leaf node in the
existing tree network. In order to resolve the conflict in the
roles of the elected leader, a recruit election is triggered and
two subgroups of the secondary leader teams are assembled
that coordinate as per the methods developed in Section V to
release the leader from its past role; see Figures 10(a)-10(b).
When the leader is released, it moves towards its announced
task until it gets trapped at a local stationary point. This
triggers a new recruit election so that a new robot eventually

(a) Time k = 1400 (b) Time k = 2200

(c) Time k = 2700 (d) Time k = 2840

Fig. 9. Simulation Study I: Evolution of the communication network when
the second target (blue cross) is announced. Figures 9(a) through 9(d) show
the evolution of the system at different time instants. Green lines represent the
communication links among the robots. Red lines depict the constructed tree
network across the edges of which robots in the secondary leader team move
as described in Section V-B; see Figures 9(a)-9(b). Their thickness depends
on the value of TijR(xi,xj), i.e., thicker lines capture higher values. The
blue rhombus represents the AP, the yellow squares illustrate a junction node,
the red star stands for the leader and the orange dots for the rest members of
the primary leader team. The redundant robots are depicted by black dots and
the green rhombus represents a leaf node, i.e., a robot that services a target.

joins the primary leader team as shown in Figures 10(c)
through 10(e)) assisting the leader to reach its associated target
(Figure 10(f)).

Note that in order to service all the announced targets,
multi-hop paths have been created from the leaf nodes of the
tree network to the APs, that are due to the robots’ restricted
communication capabilities. In Figure 11, the minimum inter-
robot distance at each iteration is presented, which is always
greater than 0, implying collision-free robot trajectories. Also,
in Figure 12, the quantity routx,i −rinx,i for all robots is illustrated
showing that an acceptable quality of communication among
the robots is maintained. Finally, the convergence of the
Lagrange multipliers is depicted in Figure 13.

Next we consider a network of N = 12 robots and K = 2
APs residing in a complex environment whose convex hull
has diameter equal to 17 units while the parameters l and
u in (27) are selected to be 2.7 and 3.4 units, respectively.
The two APs are located at x13 = [1, 4] and x14 = [1.5, 8]
and the robots are initially deployed in the left part of the
environment W between the two APs. Figures 14(a) through
14(d) show that a multi-hop communication path is established
between leaf nodes and APs when a new task is serviced, in a
similar way as in the previous simulation study. The evolution
of the communication constraints ci = routx,i −rinx,i over time is
depicted in Figure 15 showing that robots are able to maintain
network integrity, as defined in equation (5).

15

(a) Time k = 3250 (b) Time k = 3600

(c) Time k = 4500 (d) Time k = 4950

(e) Time k = 5500 (f) Time k = 5850

Fig. 10. Simulation Study I: Evolution of the communication network when
the third target (blue cross) is announced. Figures 10(a) through 10(f) show the
evolution of the system at different time instants. Green and red lines represent
the communication links among the robots. Red lines depict the constructed
tree network across the edges of which robots in the secondary leader team
move as described in Section V-B; see Figures 10(a)-10(d). Their thickness
depends on the value of TijR(xi,xj), i.e., thicker lines capture higher values.
The blue rhombus represents the AP, the yellow squares illustrate a junction
node, the red star stands for the leader and the orange dots for the rest members
of the primary leader team. The redundant robots are depicted by black dots
and the green rhombus represents a leaf node, i.e., a robot that services a
target.

VII. CONCLUSIONS

In this paper, we addressed the problem of servicing a
collection of tasks in complex environments by a mobile robot
network, while ensuring end-to-end connectivity with a fixed
infrastructure of access points. Tasks were associated with
specific locations in the environment, they were announced
sequentially, and they were not assigned a priori to any robots.
Communication with the access points was modeled through
a routing model where the communication links captured
the rate of information that can be transmitted between two
nodes. A distributed, hybrid control scheme was proposed that
dynamically grew tree networks, rooted at the access points,
with branches that connect dedicated leaf nodes that serviced
individual tasks to the main network structure. To achieve this
goal, the robots switched between different roles that were
related to their functionality in the network which, along with
the communication optimization and motion planning, gave

0 1000 2000 3000 4000 5000 6000 7000
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Iterations

M
in
im

u
m

In
te
r-
n
o
d
e
d
is
ta
n
ce

Fig. 11. Simulation Study I: Graphical depiction of the minimum inter-
node distance during network evolution. Collision avoidance constraints are
satisfied as the robots move.

0 1000 2000 3000 4000 5000 6000 7000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ro
u
t

x
֒i

−
ri

n x
֒i

Iterations

Fig. 12. Simulation Study I: Graphical depiction of the difference routx,i −rinx,i
for all robots of the network.

rise to the proposed distributed hybrid system. Construction
of tree networks along with an appropriate selection of branch
junctions resulted in an efficient use of the available robots.
Our proposed scheme achieves global planning by construction
verified also by numerical simulations.

APPENDIX A
COMPUTATION OF FREE-SPACEWf

The construction of the free-space Wf is presented in
Algorithm 6. Initially, the free-space is assumed to be the
whole workspace W [line 1]. Then, in lines 2-6 of the
algorithm, the points q ∈ W whose distance from each edge
e of the boundary ∂W is less than or equal to some small
number ρ > 0 are removed from the free-space, so that Wf is
finally obtained. To achieve this, we first define the half-space
determined by the e-th edge of ∂W and pointing inside W ,
as He =

{
q ∈ R2 | aTe q ≤ be

}
.

Then, we translate the half-space He in oder to discard
the points q ∈ W for which it holds that ‖q − qb‖ ≤

16

0 1000 2000 3000 4000 5000 6000 7000
0

1

2

3

4

5

6

7

Iterations

L
ag
ra
n
ge

M
u
lt
ip
li
er
s

Fig. 13. Simulation Study I: Evolution of Lagrange multipliers λi for all
robots of the network.

(a) k=4000 (b) k=7780

(c) k=13000 (d) k=19000

Fig. 14. Simulation Study II: Figures 14(a)-14(b) and 14(c)-14(d) show
the network configuration until the first and the second task are serviced,
respectively. Green and red lines represent the communication links among
the robots. Red lines depict the constructed tree network across the edges
of which robots in the secondary leader team move as described in Section
V-B. Their thickness depends on the value of TijR(xi,xj), i.e., thicker lines
capture higher values. The blue rhombus represents the AP, the yellow squares
illustrate a junction node, the red star stands for the leader and the orange
dots for the rest members of the primary leader team. The redundant robots
are depicted by black dots and the green rhombus represents a leaf node, i.e.,
a robot that services a target.

ρ, qb ∈ ∂W . The translated half-space is defined as Hetr ={
q ∈ R2 | aTe q ≤ be + ρe

}
, where ρe is a constant used to

translate the half-space He so that for every edge e of ∂W
the distance between the lines aTe q = be and aTe q = be+ρe is
equal to ρ > 0, ∀e. A graphical example of these half-spaces
is depicted in Figure 16.

Next, we denote by ve1 and ve2 the vertices of the polygonal
boundary ∂Wf that constitute the endpoints of the e-th edge
of ∂Wf . With slight abuse of notation, we denote by Hve

1
the

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

0

0.2

0.4

0.6

0.8

1

Iterations

ro
u
t

x
,i

−
ri

n x
֒i

Fig. 15. Simulation Study II: Graphical depiction of the difference routx,i −rinx,i
for all robots of the network.

(a) Iteration 1 (b) Iteration 2

Fig. 16. An illustrative explanation of Algorithm 6. The first 2 iterations of
Algorithm 6 are shown in Figures 16(a) and 16(b). The red polygonal line
stands for the boundary of the free-space Wf at the end of every iteration.
The dark gray area represents the region We

o that is subtracted from Wf at
the current iteration, while the light gray area is the region that was subtracted
from Wf at previous iterations. The green dashed line depicts the boundary
of the resulting Wf when Algorithm 6 terminates.

half-space determined by the edge of ∂Wf that is incident to
the point ve1 and does not pass through ve2 and points towards
ve2. Accordingly, we define the half-space Hve

2
. Such half-

spaces are illustrated in Figure 16. Then, we exclude from
the free-space Wf the points q ∈ We

o [lines 4-5] defined as
We
o = He ∩ (R2 \ Hetr) ∩Hve

1
∩Hve

2
.

An illustrative explanation of Algorithm 6 is depicted in
Figure 16. Note that the application of Algorithm 6 results
in excluding all points q ∈ W that are arbitrarily close to
the polygonal boundary ∂W through controlling the parameter
ρ > 0.

REFERENCES

[1] J. Cortés, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[2] S. He, J. Chen, and Y. Sun, “Coverage and connectivity in duty-cycled
wireless sensor networks for event monitoring,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 3, pp. 475–482, 2012.

17

Algorithm 6 Computation of the free-space Wf

Require: W and ρ > 0;
1: Wf :=W;
2: for e = 1 : E do
3: Compute the half-spaces He, Hetr, Hve

1
and Hve

2
;

4: We
o = He ∩ (R2 \ Hetr) ∩Hve

1
∩Hve

2
;

5: Wf :=Wf \We
o ;

6: end for

[3] I. Nourbakhsh, K. Sycara, M. Koes, M. Yong, M. Lewis, and S. Burion,
“Human-robot teaming for search and rescue,” IEEE Pervasive Comput-
ing, vol. 4, no. 1, pp. 72–79, 2005.

[4] Y. Kim and M. Mesbahi, “On maximizing the second smallest eigenvalue
of a state-dependent graph laplacian,” IEEE Transactions on Automatic
Control, vol. 51, no. 1, pp. 116–120, 2006.

[5] M. C. DeGennaro and A. Jadbabaie, “Decentralized control of connec-
tivity for multi-agent systems,” in 45th IEEE Conference on Decision
and Control, San Diego, CA, USA, December 2006, pp. 3628–3633.

[6] M. M. Zavlanos and G. J. Pappas, “Potential fields for maintaining
connectivity of mobile networks,” IEEE Transactions on Robotics,,
vol. 23, no. 4, pp. 812–816, 2007.

[7] M. Zavlanos and G. Pappas, “Distributed connectivity control of mobile
networks,” IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1416–
1428, 2008.

[8] G. Notarstefano, K. Savla, F. Bullo, and A. Jadbabaie, “Maintaining
limited-range connectivity among second-order agents,” in IEEE Amer-
ican Control Conference, Minneapolis, MN,USA, June 2006, pp. 6–pp.

[9] M. Ji and M. B. Egerstedt, “Distributed coordination control of multi-
agent systems while preserving connectedness.” IEEE Transactions on
Robotics, vol. 23, no. 4, pp. 693–703, August 2007.

[10] M. Zavlanos, M. Egerstedt, and G. Pappas, “Graph theoretic connectivity
control of mobile robot networks,” Proc. of the IEEE, vol. 99, no. 9,
pp. 1525–1540, 2011.

[11] M. M. Zavlanos, A. Ribeiro, and G. J. Pappas, “Network integrity in
mobile robotic networks,” IEEE Transactions on Automatic Control,
vol. 58, no. 1, pp. 3–18, 2013.

[12] ——, “Mobility & routing control in networks of robots,” in 49th IEEE
Conference on Decision and Control, Atlanta, GA, USA, December
2010, pp. 7545–7550.

[13] J. Fink, A. Ribeiro, V. Kumar, and B. M. Sadler, “Optimal robust
multihop routing for wireless networks of mobile micro autonomous
systems,” in IEEE Military Communications Conference, (MILCOM),
San Jose, CA, November 2010, pp. 1268–1273.

[14] M. Lindhé and K. H. Johansson, “Adaptive exploitation of multipath fad-
ing for mobile sensors,” in IEEE International Conference on Robotics
and Automation, Anchorage, Alaska, May 2010, pp. 1934–1939.

[15] Y. Mostofi, M. Malmirchegini, and A. Ghaffarkhah, “Estimation of com-
munication signal strength in robotic networks,” in IEEE International
Conference on Robotics and Automation, Anchorage, Alaska, May 2010,
pp. 1946–1951.

[16] M. Malmirchegini and Y. Mostofi, “On the spatial predictability of com-
munication channels,” IEEE Transactions on Wireless Communications,
vol. 11, no. 3, pp. 964–978, 2012.

[17] A. Ghaffarkhah and Y. Mostofi, “Channel learning and communication-
aware motion planning in mobile networks,” in IEEE American Control
Conference, Baltimore, Maryland, USA, 2010, pp. 5413–5420.

[18] J. Le Ny, A. Ribeiro, and G. J. Pappas, “Adaptive communication-
constrained deployment of unmanned vehicle systems,” IEEE Journal
on Selected Areas in Communications, vol. 30, no. 5, pp. 923–934, 2012.

[19] M. Turpin, N. Michael, and V. Kumar, “Capt: Concurrent assignment and
planning of trajectories for multiple robots,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 98–112, 2014.

[20] D. Panagou, M. Turpin, and V. Kumar, “Decentralized goal assignment
and trajectory generation in multi-robot networks: A multiple lyapunov
functions approach,” arXiv preprint arXiv:1402.3735, 2014.

[21] M. M. Zavlanos and G. J. Pappas, “Dynamic assignment in distributed
motion planning with local coordination,” Robotics, IEEE Transactions
on, vol. 24, no. 1, pp. 232–242, 2008.

[22] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “Goal assignment
and trajectory planning for large teams of aerial robots.” in Robotics:
Science and Systems, 2013.

[23] ——, “Goal assignment and trajectory planning for large teams of
interchangeable robots,” Autonomous Robots, vol. 37, no. 4, pp. 401–
415, 2014.

[24] S. G. Loizou and K. J. Kyriakopoulos, “Navigation of multiple kine-
matically constrained robots,” IEEE Transactions on Robotics, vol. 24,
no. 1, pp. 221–231, 2008.

[25] J. Fink, A. Ribeiro, and V. Kumar, “Robust control for mobility and
wireless communication in cyber-physical systems with application to
robot teams,” Proceedings of the IEEE, vol. 100, no. 1, pp. 164–178,
2012.

[26] J. Stephan, J. Fink, B. Charrow, A. Ribeiro, and V. Kumar, “Robust
routing and multi-confirmation transmission protocol for connectivity
management of mobile robotic teams,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Chicago, IL, USA,
September 2014, pp. 3753–3760.

[27] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation, vol. 2, San Fransisco, CA, USA, April 2000,
pp. 995–1001.

[28] A. Ruszczynski, Nonlinear optimization. Princeton University Press,
2011, vol. 13.

[29] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[30] N. Chatzipanagiotis, D. Dentcheva, and M. M. Zavlanos, “An augmented
lagrangian method for distributed optimization,” Mathematical Program-
ming, Ser.A, vol. 152, no. 1-2, pp. 405–434, August 2015.

[31] F. Aurenhammer and R. Klein, Handbook of Computational Geometry.
Elsevier Publishing House, 1999, ch. 5: Voronoi Diagrams, pp. 201–290.

[32] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

Yiannis Kantaros received the Diploma in Elec-
trical and Computer Engineering in 2012 from the
University of Patras, Patras, Greece. He is cur-
rently working toward the Ph.D. degree in the De-
partment of Mechanical Engineering and Materials
Science, Duke University, Durham, NC, USA. His
current research interests include distributed control,
distributed optimization, multi-agent systems and
robotics. He received the Best Student Paper Award
at the 2nd IEEE Global Conference on Signal and
Information Processing in 2014.

Michael M. Zavlanos received the Diploma in
Mechanical Engineering from the National Technical
University of Athens (NTUA), Athens, Greece, in
2002, and the M.S.E. and Ph.D. degrees in Electrical
and Systems Engineering from the University of
Pennsylvania, Philadelphia, PA, in 2005 and 2008,
respectively.

From 2008 to 2009 he was a Post-Doctoral Re-
searcher in the Department of Electrical and Sys-
tems Engineering at the University of Pennsylvania,
Philadelphia. He then joined the Stevens Institute of

Technology, Hoboken, NJ, as an Assistant Professor of Mechanical Engineer-
ing, where he remained until 2012. Currently, he is an assistant professor of
mechanical engineering and materials science at Duke University, Durham,
NC. He also holds a secondary appointment in the department of electrical
and computer engineering. His research interests include a wide range of
topics in the emerging discipline of networked systems, with applications in
robotic, sensor, communication, and biomolecular networks. He is particularly
interested in hybrid solution techniques, on the interface of control theory,
distributed optimization, estimation, and networking.

He is a recipient of the 2014 Office of Naval Research Young Investigator
Program (YIP) Award and the 2011 National Science Foundation Faculty
Early Career Development (CAREER) Award. He was also a finalist for the
best student paper award at CDC 2006.

