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Abstract— This paper considers a risk-averse approach to
planning the motion of mobile sensor networks in order to
maximize the information they collect in uncertain environ-
ments. Recent models of risk shape the tails of the probability
distributions of the decision variables, controlling in this way
the occurrence of rare but important events. In this paper, we
formulate the sensor planning problem as a Markov Decision
Process (MDP) and propose a distributed risk-averse policy
gradient method to obtain optimal policies for the team of
sensors. These policies avoid extremely low reward and high
risk events. The simulation results validate the effectiveness of
the proposed distributed risk-averse method.

I. INTRODUCTION

In this paper, we consider mobile sensor networks operat-
ing in uncertain environments, that are tasked with collabo-
ratively maximizing information acquisition while avoiding
dangerous regions, e.g., regions that contain obstacles or
where the sensors can be detected by adversary agents. Such
planning problems are often formulated in the literature using
Markov Decision Processes (MDPs) [1], where the state
space contains the possible configurations of the sensors, the
actions allow the sensors to move between adjacent config-
urations in the state space, and the reward function rewards
information acquisition and penalizes actions that drive the
sensors to dangerous regions. The goal is to obtain an optimal
policy that allows the sensors to accomplish their assigned
tasks and maximize the total reward. Standard dynamic
programming methods, such as policy or value iteration,
can be used for this purpose [1]. Nevertheless, if the state
space of the MDP is too large or unknown, approximation
methods are necessary to address computational complexity
[5]. For example, this is the case if continuous variables are
incorporated in the state space.

Reinforcement learning [4, 9]–[11] is a typical approach
to determine optimal policies for MDPs with models that are
not known but instead learned along the way. Quite often,
reinforcement learning problems are solved using policy
gradient algorithms [9]. In these algorithms, MDP policies
are appropriately parameterized and the gradient of the
objective function of the MDP with respect to that parameter
is estimated. Using the estimated gradient, the algorithm
updates the parameter until a locally optimal solution is
obtained consisting of the optimal policy and the associated
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objective value of the MDP. In this paper, we develop a
distributed policy gradient method to guide the team of
sensors in the environment in order to optimally acquire
information. A similar approach is proposed in [5] where
the authors consider a team of robots tasked with exploring
the workspace and learning the MDP model collaboratively.
Each robot can communicate with its neighboring robots,
and the learning updates carried out by the robots are
coordinated using a consensus procedure [13]. By exploring
the workspace in parallel and allowing the team of robots
communicate with each other, the robots can more efficiently
learn the desired process.

A popular way to capture uncertainty in MDPs, that
is common in the literature discussed above, is using the
expectation. However, such mean-value formulations are
typically unable to capture high risk events that have low
frequency of occurrence but large impact on the system.
Instead, here we consider models of risk [6]–[8] which aim
at capturing the impact of low-probability but low-reward
events, and develop a risk-averse, distributed policy gradient
method to guide the team of sensors in an environment
of interest in order to optimally acquire information. This
work is most closely related to [5] and [12]. In particular,
we incorporate in the risk-averse policy gradient algorithm
proposed in [12] with the distributed actor-critic method in
[5] and study convergence of the resulting method. To the
best of our knowledge, this is the first distributed risk-averse
reinforcement learning method for mobile sensor networks.

II. PROBLEM FORMULATION

Consider a team of N mobile robot sensors tasked with
monitoring and collecting information in an environment of
interest. Let N := {1, ..., N} denote the set of robots. The
workspace in which the sensors operate is described by a
two-dimensional grid world. Grid points in the grid world
represent possible positions of the sensors. Edges connecting
adjacent grid points indicate motion steps that the sensors can
take. While more general grid worlds are possible, in this
paper we connect each grid point to its East, West, South,
and North adjacent points. This means that at each time step,
each sensor is allowed to move to the grid points that are
East, West, South, or North of its current location.

At time k ∈ K, the position of robot i ∈ N is de-
noted by xik ∈ R2, where K = {0, . . . ,K} denotes the
time horizon during which the sensors move. The actions
available to the mobile sensors at this time instant are uik ∈
U := {(1, 0), (−1, 0), (0, 0), (0, 1), (0,−1)}, and correspond
to steps in the East, West, North, and South directions, along



with a “Stay” that keeps the robot at its current location. As
a result of actions in U , the position of the robot is updated
as xik+1 = xik + uik, for i ∈ N and k ∈ K.

In addition to the robots, we assume that there are M
sources in the workspace that the sensors need to detect.
Let M := {1, . . . ,M} denote the set of sources. A source
may be mobile and each source’s position at time k ∈ K
is denoted by mi

k for i ∈ M. Each robot has the ability to
sense the intensity or signal strength of each source that is
in its range. At time k ∈ K, for source j ∈M, the strength
of the signal received at position y is defined as

sjk(y) =
wjk

2π det(Σj)1/2
e−(y−mjk)T (Σj)−1(y−mjk)/2, (1)

i.e., it is assumed to be Gaussian with mean mj
k and

covariance Σj with a scale factor wjk. The signal strength
of each source sensed by a robot can be used to design a
motion strategy for that robot driving it to configurations that
contain more information about the sources. In Section III,
we address this planning problem for a single robot, while in
Section IV, we develop a distributed solution where multiple
sensors explore the workspace and estimate the sources in
parallel, significantly increasing efficiency of the method.

III. RISK-AVERSE MARKOV DECISION PROCESS

We use Markov Decision Processes (MDPs) [1] to model
the sensing task described in Section II. In our MDP, the
state space S contains the robot coordinates in the 2-D grid
world as well as the associated source signal strengths sensed
by the robot at that location1. In particular, consider a state
q = (x, s) ∈ S, where x ∈ R2 represents the robot’s position
in the grid world and s ∈ RM the signal strength received
by the robot when it is located at position x, where M is the
total number of the sources. The action space U is defined
in Section II. Further, let P(u) := Pr{· | ·, u} denote the
transition kernel depending on action u, for all u ∈ U , which
we assume that is not changing in time. The probability of
transition from state q ∈ S to state q′ ∈ S given action u ∈ U
can be determined by the signal strength, robot location, and
actions available to the mobile sensor. For example, assuming
that the sources are static, one can use the signal received at
each grid point and the location of the grid point to construct
the probability of transition.

If the robot identifies source j ∈ M, i.e., if xk = mj
k at

some time period k, then a random reward vjk is collected,
whose distribution does not change in time; otherwise the
reward is zero. We assume that different sources result in
different rewards, modeling, e.g., different source intensities.
Moreover, the positions of the sources mj

k are assumed to
be time-varying and random for all j ∈ M. This allows
us to model situations where uncertainty in the sensor
measurements and outcomes is also present. Note that we
assume that the reward can also take negative values to
penalize for not detecting the source in time.

1In this section we focus on the motion planning of a single robot,
therefore, for ease of presentation, we drop the superscript index i.

We denote by Z :=
∑K
k=0Rk the total reward after

K time steps, and denote by x∗ a terminal state of the
MDP. Here, we use upper case letters to denote random
variables and lower case letters to denote realizations of
the random variables, namely, Rk is the random reward
collected by the robot at time k ∈ K and rk represents
a particular realization of Rk. Let fZ(z) and ΨZ(z) =
Pr(Z ≤ z) denote the probability density function and the
cumulative distribution function (CDF) of Z, respectively.
Assume that ΨZ(z) is a continuous function of z. Similarly,
denote by Ξ a random trajectory and the associated total
reward of the MDP and by ξ = (x0, u0, r0, ..., xK , uK , rK)
one realization of the trajectory and reward Ξ, where the
trajectory of a MDP is defined as a sequence of states and
actions (x0, u0, · · · , xK , uK) of the MDP. Let fΞ(ξ) denote
the probability density function of Ξ.

A. Policy Gradient Approach

The first step in designing a policy gradient algorithm for
our problem is to construct the parameterized MDP policy.
Following [5, 12], we parameterize the policy µθ(u | xk) by
a parameter θ ∈ RM for k ∈ K as

µθ(u | xk) =
exp(ηθ(u, xk))∑
v∈U exp(ηθ(v, xk))

, (2)

where

ηθ(u, x) =

M∑
j=1

θjs
j
k(x+ u). (3)

The parameter θ is an M -dimensional vector and M is the
total number of the sources. Each element θj of θ represents
the weight applied to the signal sj that is transmitted from
source j, where j ∈ M. The random policy µθ(u | xk)
yields a probability distribution over possible actions given
the current robot position xk. Equation (2) represents a so
called softmax policy [9]. The policy favors sources located
close to the sensor and will drive the sensor towards those
sources. In (3), ηθ(u, x) is a linear combination of the signal
strengths sjk weighted by the weight vector θ.

Using the parameter θ, we can also parameterize the
random vector Ξ. In particular, denote by fΞ(ξ; θ) the
parameterized probability density function of Ξ. Similarly,
we parameterize the random variable Z (the objective of
the MDP) using the parameter θ. Let fZ(z; θ) denote the
parameterized probability density function of Z and ΨZ(z; θ)
the cumulative distribution function of Z with a threshold
z ∈ R. We use the notation E[Z; θ] to denote the expectation
of Z given the parameter θ.

Given the parametrized MDP discussed above, we then
take a sample of W trajectories (ξ1, ..., ξW ) of the MDP and
estimate the gradient of the expected objective E[Z; θ] with
respect to θ, where each sample ξ ∈ {ξ1, ..., ξW } consists
of a state trajectory and the corresponding rewards, i.e., ξ =
(x0, u0, r0, ..., xK , uK , rK). Let ∆̄W := (∆̄1;W , ..., ∆̄M ;W )
denote the estimate of the gradient ∇E[Z; θ] with respect
to the parameter θ, where we use subscript j in ∆̄j,W

to indicate the j-th element of the vector ∆̄W . Using



the gradient estimate ∆̄W we can update the parameter θ
in the gradient ascent direction in order to maximize the
parametrized expectation of the cumulative rewards E[Z; θ]
as

θl+1 = θl + εl∆̄W , (4)

where εl is a step size. Note that the subscript l in (4)
indicates the iteration index of the gradient ascent algorithm.
Each iterate θl is an M -dimensional vector and θj,l denotes
the j-th element of θl. Under mild assumptions, the update
(4) will lead the parameter θ to a locally optimal point [9].

In this policy gradient algorithm, the objective is defined
as the expectation of the total rewards. The expectation
may perform poorly due to the significant variability in
the realizations of the random problem parameters. In the
following, we replace the expectation operator with a risk
model to improve the performance of the policy in highly
uncertain environments with high variability.

B. Risk-Averse Policy Gradient

Compared to the expectation, risk models provide a so-
lution, which is less sensitive to changes in the distribution
of the decision variables without being overly conservative
as in worst-case approaches that control the variance of the
random variables. Also, unlike the expectation, also called
a risk-neutral model, the risk models take into account the
extreme low-reward events by shaping the tail of the proba-
bility distribution of the random decisions. There are various
risk models proposed in the literature that have different
properties and applications. Here, we use Conditional Value-
at-Risk (CVaR) [2, 3, 6] which can be reformulated to
obtain a convex form. Convexity of CVaR makes methods
to control it computationally favorable compared to other
risk models. Also, CVaR is a coherent risk measure with
some nice properties. CVaR can be derived from the Value-
at Risk (VaR) risk model. However, in general, VaR does not
have a convex structure. Also, by tuning a parameter, CVaR
can represent a broad spectrum of risk preferences (from the
worst-case risk-averse to the risk-neutral preferences).

Specifically, the β-VaR of random variable Z (denoted by
αβ(Z)) is defined as

αβ(Z) := min{z ∈ R | ΨZ(z) ≥ β}. (5)

The β-VaR represents the minimum value z such that for the
corresponding CDF, it holds ΨZ(z) ≥ β. Typical values of
β are 0.05 or 0.1 [6]. The β-CVaR of random variable Z
(denoted by φβ(Z)) is defined as the average of the values
which are smaller than the β-VaR, i.e.,

φβ(Z) := E[Z | Z ≤ αβ(Z)]. (6)

Similarly, for the parameterized model discussed in Section
III-A, let αβ(Z; θ) and φβ(Z; θ) denote the parameterized
VaR and CVaR, respectively.

By optimizing the CVaR φβ(Z; θ), one can efficiently
shape the left tail of the probability distribution of Z given
the decision made [6]. A risky event results in extreme low
reward, and thus by appropriately shaping the left tail of the

distribution of Z, events with the extreme low reward can
be prevented in a risk-averse manner.

In what follows, we make some standard assumptions on
the reward Z and the trajectory Ξ; see also [12].

Assumption 1: The total reward Z is a continuous vari-
able, and bounded in [−b, b] for all θ.

Assumption 2: For all θ and 1 ≤ j ≤ M , the gradient
∂αβ(Z;θ)
∂θj

and ∂φβ(Z;θ)
∂θj

are well defined and bounded.
Assumption 3: For all θ and 1 ≤ j ≤ M , the gradient

∂fZ(z;θ)
∂θj

/fZ(z; θ) is well defined and bounded.

Assumption 4: ∂ log fΞ(ξ;θ)
∂θj

is well defined and bounded
for all ξ and θ.

If the reward contains only discrete values, one may add
an arbitrarily small smooth noise to the total reward to ensure
that Assumption 1 holds [12]. Also since Z is continuous,
Assumption 2 is satisfied whenever ∂fZ(z;θ)

∂θj
is bounded [12].

Finally, Assumptions 3 and 4 are standard assumptions in
reinforcement learning [12].

As shown in [12], the gradient of the CVaR can be
expressed as a conditional expectation.

Proposition 1: [12] If Assumptions (1)-(4) hold, then

∂φβ(Z(Ξ); θ)

θj

= E
[
∂ log fΞ(Ξ; θ)

∂θj
(Z(Ξ)− αβ(Z(Ξ); θ))∣∣∣∣ Z(Ξ) ≤ αβ(Z(Ξ); θ)

]
.

(7)

The result in Proposition 1 suggests a MC algorithm to
estimate the gradient ∂φβ(Z(Ξ);θ)

θj
for j = 1, ...,M . In partic-

ular, we generate a sample of W trajectories ξ1, ..., ξW from
fΞ(Ξ; θ) and estimate αβ(Z(Ξ); θ), where each element in
{ξ1, ..., ξW } represents one trajectory. As suggested in [12],
αβ(Z(Ξ); θ) can be estimated by the empirical β-quantile ṽ

ṽ = inf
z

Ψ̂Z(z) ≥ β, (8)

where Ψ̂Z(z) is the empirical CDF of Z. One way to calcu-
late the empirical β-quantile ṽ is by first sorting the z(ξi)’s
in ascending order, (zs1, ..., z

s
W ) = sort(z(ξ1), ..., z(ξW )),

and then setting ṽ as ṽ = zsdβWe, where we let z(ξ)
denote the objective function value obtained by ξ, and the
operator sort(z(ξ1), ..., z(ξW )) basically sorts the elements
in {z(ξ1), ..., z(ξW )} in ascending order. The MC estimates
of the partial derivatives (denoted by ∆j;W ) are then given
as

∆j;W =
1

βW

W∑
i=1

∂ log fΞ(ξi; θ)

∂θj
(z(ξi)− ṽ)1z(ξi)≤ṽ, (9)

for j = 1, ...,M , where 1z(ξi)≤ṽ = 1 if z(ξi) ≤ ṽ, and
1z(ξi)≤ṽ = 0, otherwise2.

Remark 1: By the Markov property of the state transi-
tions, the gradient of the probability density function fΞ(ξ; θ)

2We use ∆W and ∆̄W to denote the gradient estimates of the CVaR and
expectation of the objective function, respectively.



Algorithm 1
Given: The CVaR level β, a sample of W trajectories
ξ1, ..., ξW of the process, and the probability density function
fΞ(ξ; θ).
Output: The gradient estimate ∆W := (∆1;W , ...,∆M ;W ).
(1) (zs1, ..., z

s
W )← sort(z(ξ1), ..., z(ξW )),

(2) ṽ ← zsdβWe,
(3) for j = 1, ...,M ,

∆j;W ←
1

βW

W∑
i=1

∂ log fΞ(ξi; θ)

∂θj
(z(ξi)− ṽ)1z(ξi)≤ṽ.

Return ∆W .

can be written as [12]

∂ log fΞ(ξ; θ)

∂θj
=

τ−1∑
k=0

log Pr(uk | xk; θ)

∂θj
, (10)

where ζ0(x0) is the probability distribution of the initial con-
dition x0 and τ is the total number of time steps considered.
We can use formulas (10) to calculate ∂ log fΞ(ξi;θ)

∂θj
in (9).

To learn the gradient (9), in the learning phase, given
the initial policy parameter θ0, the robot starts with a fixed
initial position x0 in the grid world and moves in the
workspace based on the parameter θ0. The robot repeats the
process W times and generates a sample of W trajectories
{ξ1, ..., ξW }. After the robot has recorded the sample, it
executes Algorithm 1 to calculate the gradient estimate.

The output of Algorithm 1 is the gradient estimate ∆W .
The robot uses gradient ascent to update the parameter θ
based on the gradient estimate ∆W as

θl+1 = θl + εl∆W , (11)

where εl is a step size. Note that the subscript l in (11)
is the iteration index of the gradient ascent algorithm. Each
iterate θl is an M -dimensional vector. Denote by θj,l the j-th
element of θl.

It is shown in [12] that the gradient estimator ∆W is a
biased and consistent estimator of ∇φβ(Z; θ).

Proposition 2: [12] If Assumptions (1)-(4) hold, then for
j = 1, ...,M , ∆j,W → ∂φβ(Z;θ)

∂θj
w.p. 1 as W →∞.

Similar to Section III-A, under Assumptions 1-4, the
update (11) will lead the parameter θ to a locally optimal
point [12].

IV. DISTRIBUTED RISK-AVERSE POLICY GRADIENT

In the previous section, we considered a single robot that
explores the workspace and learns the process along the
way. In the learning phase (Algorithm 1), there are multiple
trajectories required to update the policy parameter, so the
workload for the single robot is high. In this section, we
propose a way to parallelize the learning task by considering
multiple robots that collaboratively explore the environment.

The key idea for our distributed learning framework fol-
lows the approach proposed in [5]. In particular, we assume
that each robot i has its own parameter θi and generates its

own gradient estimate ∆i
W i with sequences of realizations

ξi = (xi0, u
i
0, r

i
0, ..., x

i
K , u

i
K , r

i
K). Then, the policy of every

robot i is (cf. (2) and (3))

µθi(u
i | xik) =

exp(ηθi(u
i, xik))∑

v∈U exp(ηθi(vi, x
i
k))

, (12)

where

ηθi(u
i, xi) =

M∑
j=1

θijs
j
k(xi + ui). (13)

and the parameters θi are local to every robot. The goal is
that all robots coordinate to estimate and update a common
parameter θ in a distributed way. For this, we introduce a
consensus update to ensure that the policy parameters θi for
all i ∈ N converge to the same value θ. Agreement on
the parameter θ means that the robots will collaboratively
learn a common policy parameterized by θ. Specifically,
consider a directed graph G = (N , E), over which the robots
communicate in order to update θi. The nodes in the graph G
correspond to the robots, while arcs denote communication
links between robots, so that, if robot i and robot j can
communicate with each other, then T ij is the time that robot
i receives a message from robot j and tij(k) is the time this
message was sent.

Using the above formulation, we can design a distributed
policy gradient algorithm where, in the first step of the
algorithm, each robot carries out its own gradient estimation
(Algorithm 1) and in the second step of the algorithm, each
robot updates its parameter θi by

θil+1 = Aiil θ
i
l +
∑
j 6=i

Aijl θ
j
tij(l) + εl∆

i
W , (14)

where Aijl = diag(aij1,l, ..., a
ij
M,l), Aijl ≥ 0,

∑N
j=1 a

ij
m,l = 1

for all i,m, l, and Aijl = 0 if l /∈ T ij for all i 6= j. Each
robot’s parameter update in (14) consists of two parts: the
consensus update Aiil θ

i
l +
∑
j 6=iA

ij
l θ

j
tij(l) and the update in

the gradient direction εl∆i
W .

The proposed distributed policy gradient method relies on
the following additional assumptions on the graph G and
communication pattern.

Assumption 5: Consider a communication graph as de-
fined above. Then:
(1) The graph G is strongly connected, namely, there exists
a directed path in G from every node to every other node.
(2) There exists a positive constant γ such that Aiil ≥ γI for
all i ∈ N and l, and Aijl ≥ γI or all i, j ∈ N and l.
(3) The time between consecutive transmissions of θil from
agent j to agent i is bounded by some B ≥ 0 for all
(j, i) ∈ E .
(4) Communication delays are bounded by some B0 ≥ 0.

Assumption 5 says that information can flow between any
two agents via (14); the weights of the θ’s are bounded
away from zero; and for every robot i, there is a finite
delay between two consecutive receptions of a message θj

originating from a neighboring robot j.



By defining sil = ∆i
W , we can rewrite (14) as follows:

θil+1 = Aiil θ
i
l +
∑
j 6=i

Aijl θ
j
tij(l) + εls

i
l, (15)

where the term sil can be viewed as a noise term which
perturbs the consensus update in (15); see [5]. Denote by yl
the value of θ that all robots would agree on if at time l they
employ a different parameter update that involves only the
consensus term (the first two terms in (15)). As shown in
[13], the update (15) has the following properties.

Lemma 1: [13] Under Assumption 5, the update (15)
has the following properties:
(1) There exist vectors Φijn,l for all l ≥ n and i, j ∈ N such
that

θil =

N∑
j=1

Φij0,lθ
j
1 +

l−1∑
n=1

εnΦijn,ls
j
n, (16)

and the limit liml→∞Φijn,l exists, for any i, j, n. The limit is
independent of i and will be denoted by Φjn.
(2) There exist d ∈ [0, 1] and Ã ≥ 0 such that

max
i,j
‖Φijn,l − Φjn‖ ≤ Ãdl−n, l ≥ n, i, j ∈ N . (17)

(3) The vector yl can be obtained by the update

yl =

N∑
j=1

Φj0θ
j
1 +

l−1∑
n=1

εnΦjns
j
n, l ≥ 0. (18)

In general, the objective φβ(θ) is not concave in θ. In the
following, we start with an assumption on the step size εl
in the update (14) and show that the update (14) will lead
the parameter θi to a locally optimal solution. Moreover,
consensus on the parameter will be reached, i.e., ‖θil−θ

j
l ‖ →

0 as l→∞, for all i, j ∈ N .
Assumption 6: The step size εl satisfies∑

l

εl =∞,
∑
l

(εl)
2 <∞. (19)

Theorem 1: Let Assumptions (1)-(6) hold. Also, assume
that ∆j,Wl

→ ∂φβ(θil )
∂θj

w.p. 1 for all i ∈ N , and j ∈ M.
Then the sequences {θil} generated by the algorithm satisfy

lim inf
l→∞

‖∇φβ(θil)‖ = 0, ∀i ∈ N , w.p. 1. (20)
Proof: Each robot’s update (14) can be written as

θil+1 = Aiil θ
i
l +
∑
j 6=i

Aijl θ
j
tij(l) + εl∆

i
W

= θil + εl∇φβ(θil) + ei1,l + ei2,l,

(21)

where ei1,l = εl
(
∆i
W − ∇φβ(θil)

)
and ei2,l = Aiil θ

i
l +∑

j 6=iA
ij
l θ

j
tij(l) − θ

i
l .

Following the analysis in [5] and [13], we can show that
e2,j → 1 w.p. 1. Specifically, let,

bl =

N∑
i=1

εl‖∆i
W ‖. (22)

Using Lemma 1, we can bound the difference between the
sequence θil and yl. In particular, we have that there exist

d ∈ [0, 1) and A ≥ 0 such that

‖yl − θil‖ ≤ A
l∑

n=1

dl−nbn

= Ab1

(
d(l−1) +

l−1∑
n=1

dl−n−1bn+1

b1

) (23)

Furthermore, we have

E
[∑

l

(bl)
2

]
≤ E

[∑
l

N

N∑
i=1

ε2l ‖∆i
W ‖2

]

≤ N
∑
l

(εl)
2
N∑
i=1

E[‖∆i
W ‖2] ≤ ∞,

(24)

where the second inequality is due to the boundedness
assumptions on z and ∂ log fΞ(ξ;θ)

∂θj
. Hence, bl converges to

zero almost surely. Due to (23), yl − θil converges to zero
for all i ∈ N almost surely, and e1

2 converges to zero almost
surely as well.

The convergence of the error term ei1,l can be established
by the consistency property (Proposition 2 in Section III-B),
according to which, ∆j,Wl

→ ∂φβ(θil )
∂θj

w.p. 1, as Wl → ∞
for all i ∈ N and j = 1, ...,M .

Following the analysis in Theorem 6.3 in [4] and using
the Taylor’s series, we have

φβ(θil+1) ≥ φβ(θil) +∇φβ(θil)
>(εl∇φβ(θil) + ei1,l + ei2,l)

+ C̃ · ‖εl∇φβ(θil) + ei1,l + ei2,l‖2,
(25)

where C̃ reflects a lower bound on the Hessian of φβ . For
some T > 0, define lj+1 = min{l ≥ lj |

∑l
t=lj

εt ≥ T} for
j > 0. Using (25), we have

φβ(θilj+1
) ≥ φβ(θilj ) +

lj+1−1∑
t=lj

εt‖∇φβ(θit)‖2

+

lj+1−1∑
t=lj

∇φβ(θit)(e
i
1,t + ei2,t)

+

lj+1−1∑
t=lj

C̃ · ‖εt∇φβ(θit) + ei1,t + ei2,t‖2,

(26)

where the last two terms in (26) converge to zero. Now as-
sume that ‖∇φβ(θit)‖ does not converge to zero. Then φβ(θil)
will increase indefinitely, which contradicts the boundedness
assumption on φβ . This completes the proof. �

Theorem 1 shows that all robots agree on the same policy
parameter which converges to a locally optimal solution. The
difference between the proof of Theorem 1 and the analysis
in [5] lies in the noise term sil in (15) derived from the policy
gradient algorithm which has a different structure compared
to the noise term in [5]. Note that the requirement ∆j,Wl

→
∂φβ(θil )
∂θj

w.p. 1 for all i ∈ N indicates that the number of
MC samples Wl →∞ as l→∞.



V. NUMERICAL SIMULATIONS

In this section we illustrate our distributed risk-averse
policy gradient method by comparing it to the risk-neutral
case. We construct a workspace using a grid world as in
Fig. 1. In the first example, we use only one robot to
explore the workspace. In the workspace, there are two static
sources located at positions (9, 3) and (3, 9), respectively. We
partition the workspace into two regions. The grey and white
regions are defined as the risky and safe regions, respectively.
A risky region provides larger average rewards with higher
variance than the safe one. In particular, each position in the
risky region has random reward 200× a+ d, where a has a
uniform distribution over [0, 1] and d ∼ N (0, 104). Source 2
inside the risky region has a reward v2

k ∼ N (2000, 4× 106)
for all k ∈ K. Each reward in the risky region is bounded in
the interval [−104, 104]. Each position in the safe region has
random reward 100 × a. Source 1 that is in the safe region
has a reward v1

k = 1000 for all k ∈ K. The two sources in the
workspace generate the signal based on a two-dimensional
Gaussian distribution described in (1).

We compare the risk-neutral approach (Section III-A) that
determines the final policy parameterized by the parameter θ
that optimizes the average cumulative rewards with the risk-
averse approach (Section III-B) that optimizes the CVaR of
the cumulative rewards. We use 6000 MC samples (W =
6000) for both the risk-neutral and risk-averse approaches.
Fig. 2 shows that the risk-averse approach results in larger
CVaR of the total reward than the risk-neutral one. In Fig.
1, we plot trajectories obtained by the risk-neutral and risk-
averse policies. The grey and white regions are the risky and
safe regions, respectively. Red stars represent the targets and
squares are the final positions of the robots. Blue and black
lines represent realizations of the trajectories obtained by
the risk-neutral and risk-averse policy, respectively. Unlike
the risk-neutral one, the risk-averse final policy generates
a sample path which only marginally extends to the risky
region.

In the second example, we verify the convergence of the
distributed policy gradient algorithm proposed in Section
IV. We consider three robots that carry their own gradient
estimation. Robot 1 can communicate with Robot 2; Robot
2 can communicate with Robot 1 and 3; and Robot 3
can communicate with Robot 2. We compare a centralized
solution, where a single robot uses 6000 MC samples (W =
6000) in the policy gradient algorithm with a distributed
solution where each one of the three robots uses 2000 MC
samples (Wi = 2000) so that the task is run in parallel. Fig. 3
shows the average and CVaR of the total rewards obtained by
the centralized and distributed approaches. We can see that
both the average and CVaR of the total rewards obtained
by the distributed approach converge to their corresponding
centralized values. Fig. 4 shows the convergence of the
consensus. Specifically, we plot maxi,j ‖θil − θ

j
l ‖ versus the

number of iterations used in the update (15). We can see that
each agent’s parameter θil converges to the same value and
reaches consensus on the final policy.
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Fig. 1. Configuration of the grid
world and the trajectories of the
robots.
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Fig. 2. CVaR of total rewards
obtained by the risk-neutral and
risk-averse approaches.
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Fig. 3. Convergence results of the
average and CVaR of the total re-
wards of the consensus algorithm.
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Fig. 4. Convergence result of the
consensus using distributed policy
gradient algorithm.

VI. CONCLUSIONS

We presented a distributed risk-averse reinforcement learn-
ing approach to planning the motion of a network of sensors
tasked with jointly sensing an unknown environment. The
proposed risk-averse method provides a solution, which is
less conservative than worst-case approaches and takes into
account the extreme low-reward events by shaping the tail
of the probability distribution of the random decisions.
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