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Abstract— We study synthesis of control strategies from lin-
ear temporal logic (LTL) objectives in unknown environments.
We model this problem as a turn-based zero-sum stochastic
game between the controller and the environment, where
the transition probabilities and the model topology are fully
unknown. The winning condition for the controller in this game
is the satisfaction of the given LTL specification, which can
be captured by the acceptance condition of a deterministic
Rabin automaton (DRA) directly derived from the LTL specifi-
cation. We introduce a model-free reinforcement learning (RL)
methodology to find a strategy that maximizes the probability of
satisfying a given LTL specification when the Rabin condition of
the derived DRA has a single accepting pair. We then generalize
this approach to any LTL formulas, for which the Rabin
accepting condition may have more than one pairs, providing
a lower bound on the satisfaction probability. Finally, we show
applicability of our RL method on two planning case studies.

I. INTRODUCTION

Linear temporal logic (LTL) offers a formal language to
capture high level requirements of robot planning and control
tasks, such as jobs and motion sequencing, obstacle avoid-
ance, and surveillance. Hence, there is a growing interest in
using LTL in robotics [1]–[16]. To synthesize a controller
strategy from a given LTL task, most of these methods
require a model of the environment a-priori, limiting their
use in scenarios where the environment is unknown. For such
environments, reinforcement learning (RL) is commonly
utilized to search for a strategy that performs the task [17].

Recently, control synthesis using RL from LTL specifica-
tions is considered for Markov decision processes (MDPs).
Model-based techniques (e.g., [18], [19]) are usually based
on detection of the MDP end components; yet, with these
methods, it is necessary to learn and store the transition
probabilities of the MDP, which may result in very large
memory requirements. Model-free RL mitigates this prob-
lem; however, the given task needs to be represented by a re-
ward function such that a strategy maximizing the discounted
cumulative reward satisfies the given LTL task specifications.

Accordingly, the problem of reward shaping from LTL
specifications in MDPs has been considered in [20]–[26].
The recent limit-deterministic Büchi automata (LDBAs)
based approaches (e.g., [24], [26]) shape rewards in a way
that the learned control strategy maximizes the probability
of satisfying any given LTL specification. These approaches
generally translate the given LTL specification into an
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LDBA, which is then composed with the initial MDP, and
design a reward function based on the acceptance condition
of the automaton. State-space augmentation using the LDBA
solves the memory requirements of the task, while the Büchi
acceptance condition (i.e., repeated reachability) enables the
use of simple reward functions.

However, such LDBA-based rewarding approaches are not
well-suited for stochastic games [27], since LDBAs and
many other nondeterministic automata, in general, cannot
be used in solving games [28]. Hence, there are only few
studies on learning-based synthesis from temporal objec-
tives for stochastic games. One approach, [29] proposed a
model-based probably approximately correct (PAC) learning
algorithm for stochastic games with LTL and discounted
cumulative reward objectives. Yet, the method requires that
(i) the transition graph (i.e., topology) is known a-priori,
(ii) the LTL objective must belong to a limited subset of LTL
formulas that can be translated into a deterministic Büchi
automaton, and (iii) there exists a strategy that almost surely
satisfies the LTL objective. This allows pre-computation of
the winning regions before learning. Also, [30] introduced a
model-based learning method with PAC guarantees for reach-
ability objectives only (i.e., very limited fragment of LTL
formulas). The method uses on-the-fly detection of (simple)
end components of the games, and careful construction of the
confidence intervals on the transition probabilities. However,
as model-based methods, both are inefficient in terms of
space requirements when the number of possible successors
of actions is not small.

Consequently, in this work we introduce a model-free RL
approach to synthesize controllers for stochastic games, such
that the obtained control policies maximize the (worst-case)
probabilities of satisfying the given LTL task objectives. We
start by translating the LTL objective into a Deterministic Ra-
bin Automaton (DRA) and introduce a reward and discount
function based on the Rabin acceptance condition. We first
consider DRAs with a single accepting pair and prove that
any model-free RL algorithm using these functions converges
to a desired strategy for a sufficiently large discount factor.
We then generalize our method to any LTL specification, for
which the DRA may have an arbitrary number of accepting
pairs; for such specifications, we establish a lower bound on
the satisfaction probability. Lastly, we show the applicability
of our RL approach on two robot planning case studies.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Stochastic (Turn-Based Zero-Sum) Two-Player Games
We use turn-based stochastic games to model the interac-

tion between the controller (i.e., Player 1) and unpredictable
environment (i.e., Player 2), where actions have probabilistic



outcomes. The controller can only choose actions in certain
states; the rest of the states are in control of the environment.

Definition 1 (Stochastic Games): A (labeled turn-based)
two-player stochastic game is a tuple G = (S, (Sµ, Sν),
A, P, s0,AP, L), where S is a finite set of states; Sµ⊆S
is the set of states where the controller chooses actions;
Sν=S\Sµ is the set of states where the environment chooses
actions; s0 is the initial state; A is a finite set of actions and
A(s) denotes the set of actions that can be taken in state
s ∈ S; P :S×A×S→[0, 1] is a transition probability function
such that for all s∈S,

∑
s′∈S P (s, a, s′)=1 if a∈A(s), and

0 otherwise; s0∈S is an initial state; AP is a finite set of
atomic propositions; and L:S→2AP is a labeling function.

A path is an infinite sequence of game states σ=s0s1, . . .
such that for all t≥0, there exists an action a∈A(st) where
P (st, a, st+1)>0. We use σ[t], σ[:t] and σ[t:] to denote st,
the prefix s0. . .st and the suffix stst+1. . . of the path, respec-
tively. Strategies capture the players’ behaviors, mapping the
visited states to the actions available in the current state.

Definition 2 (Strategies): For a game G, let S+
µ (S+

ν ) de-
note the set of all finite prefixes σsµf (σsνf ) ending with a state
sµ∈Sµ(sν∈Sν) of paths in the game. Then, a (pure) control
strategy µ is a function µ:S+

µ→A such that µ(σ
sµ
f )∈A(sµ)

for all σsµf ∈S+
µ ; a (pure) environment strategy ν is a

function ν:S+
ν →A such that ν(σsνf )∈A(sν) for all σsνf ∈S+

ν ;
a strategy π is memoryless, if it only depends on the current
state, i.e., for any σsf and σs

′

f , π(σsf )=π(σs
′

f ) if s=s′, and
thus can be defined as π:S→A.

The induced Markov chain (MC) of game G under a strat-
egy pair (µ, ν) is tuple Gµ,ν = (S, Pµ,ν , s0,AP, L), where

Pµ,ν(s, s′) =

{
P (s, µ(s), s′) if s ∈ Sµ
P (s, ν(s), s′) if s ∈ Sν

.

We denote by Gsµ,ν the MC resulting from changing the initial
state from s0 to s ∈ S in Gµ,ν , and use σ ∼ Gsµ,ν to denote a
random path sampled from Gsµ,ν . Finally, a bottom strongly
connected component (BSCC) of the (induced) MC Gµ,ν is a
strongly connected component with no outgoing transitions;
we use B(Gµ,ν) to denote the set of all BSCCs of Gµ,ν .

B. LTL and Deterministic Rabin Automata
The desired behavior of a labeled stochastic game G are

captured by LTL specifications, imposing requirements on
the label sequences from infinite paths of the game [31]. In
addition to the standard Boolean operators, LTL formulas can
include two temporal operators, next (©) and until (U), and
any recursive combinations of the operators captured by the
syntax ϕ := true | a | ϕ1∧ϕ2 | ¬ϕ | ©ϕ | ϕ1Uϕ2, a ∈ AP.

Satisfaction of an LTL formula ϕ for a path σ of the game
G, denoted by σ |= ϕ, is defined as follows: σ satisfies an
atomic proposition a, if a ∈ L(σ[0]); σ satisfies ©ϕ if σ[1:]
satisfies ϕ; and finally, σ |= ϕ1Uϕ2, if ∃i.σ[i] |= ϕ2 and
∀j < i.σ[j] |= ϕ1. Other temporal operators are derived as:
(eventually) ♦ϕ := true U ϕ; and (always) �ϕ := ¬(♦¬ϕ).

Any LTL formula can be transformed into a DRA that
accepts the language of all paths satisfying the formula [31].

Definition 3 (Deterministic Rabin Automata): A DRA is
a tuple A = (Q,Σ, δ, q0,Acc) where Q is a finite set of
states; Σ is a finite alphabet; δ : Q×Σ→ Q is the transition

{b}|{b,d}

{d}

{}
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Fig. 1: A DRA derived from the LTL formula ϕ=�♦b∨♦�d.
Here, B1={q1}, C2={q0} and B2={q2} are the states in the Rabin
acceptance condition Acc={(∅, B1), (C2, B2)}.

function; q0 ∈ Q is an initial state; and Acc is a set of k
accepting pairs {(Ci, Bi)}ki=1 such that Ci, Bi ⊆ Q.

An infinite path σ induces an execution; the DRA moves
one state to another as it consumes the labels of the states on
the path. The DRA accepts σ if the induced execution sat-
isfies the Rabin condition: there exists a pair (Ci, Bi)∈Acc
such that states in Ci are visited finitely many times and
at least one state in Bi is visited infinitely often – i.e.,
∃i: inf(σ)∩Ci=∅ ∧ inf(σ)∩Bi 6=∅, where inf(σ) denotes
the set of states visited infinitely many times during the
execution induced by σ. The Rabin index of an LTL formula
is the minimal number of accepting pairs a DRA recognizing
the formula can have. Without loss of generality, we assume
that the number of accepting pairs k, equals the Rabin index.

Example 1: Fig. 1 shows a DRA of the formula ϕ=�♦b∨
♦�d, with Rabin acceptance sets B1={q1}, C2={q0} and
B2={q2} (i.e., Acc={(∅, B1), (C2, B2)} is the acceptance
condition). Any path σ containing infinitely many states
labeled with b induces an execution that visits q1 infinitely
many times; thereby satisfying the Rabin condition. Other
paths satisfying the Rabin condition visit q2 infinitely many
times but q0 only finitely many times, i.e., the paths do not
contain a state without the label d after some point.

C. Reinforcement Learning for Stochastic Games
Let R : S → R be a reward function and γ ∈ (0, 1) the

discount factor for a given two-player zero-sum stochastic
game G. The value of a state s under a strategy pair (µ, ν)

vµ,ν(s) = Eσ∼Gµ,ν
[∑∞

i=0
γiR(σ[t+i])

∣∣∣∣ σ[t] = s

]
, (1)

for any fixed t ∈ N, such that Prσ∼Gµ,ν [σ[t]=s] > 0. In the
rest of the paper, we simplify our notation, omit the subscript
σ∼Gµ,ν from the expectation and use E rather than Eσ∼Gµ,ν .

The RL objective is to find an optimal control strategy µ∗
that maximizes the values of every state under the worst en-
vironment strategy. A pure and memoryless optimal strategy
always exists in two-player turn-based zero-sum stochastic
games [27], [32]. The optimal values in these games satisfy
v∗(s) = maxµ minν vµ,ν(s), where µ and ν are pure and
memoryless control and environment strategies [33]. Also,
the optimal values v∗(s) satisfy the Bellman equations

v∗(s) = R(s)+γ


max
a∈A(s)

∑
s′∈S

P (s, a, s′)v∗(s
′) if s ∈ Sµ,

min
a∈A(s)

∑
s′∈S

P (s, a, s′)v∗(s
′) if s ∈ Sν .

Model-free RL methods aim to learn the optimal values of
the stochastic game, when neither the transition probabilities
nor the game topology are known, without explicitly con-
structing a transition model of the game. A popular example
is the minimax-Q method that generalizes the standard off-



policy Q-learning algorithm to stochastic games. The mini-
max-Q method can learn the optimal values under any (likely
non-optimal) strategies used during learning as long as all
actions in each state are chosen infinitely often [32], [34].

D. Problem Formulation
We assume that the considered game G is fully observable

for both players; i.e., both are aware of the current game
state. The considered control synthesis problem is to find a
strategy for the controller that maximizes the probability that
a produced path satisfies the specification in the worst case.

To simplify our notation, we use PrGµ,ν(s |= ϕ) to denote
the probability of the paths that start from the state s and
satisfy the formula ϕ under the strategy pair (µ, ν) – i.e.,

PrGµ,ν(s |= ϕ) := Prσ∼Gsµ,ν (σ |= ϕ); (2)
we write Prµ,ν(G |= ϕ) for PrGµ,ν(s0 |= ϕ) and use Pr∗ to
denote the maximin probability maxµ minν Prµ,ν . We can
now formally define the considered problem as follows.

Problem 1: Given a labeled turn-based stochastic game G,
where the transition probabilities are fully unknown, and an
LTL specification ϕ, design a model-free RL algorithm that
finds a pure finite-memory controller strategy µ∗ such that

Prµ∗,ν (G |= ϕ) ≥ Pr∗ (G |= ϕ) (3)
for any environment strategy ν.

III. LEARNING FOR STOCHASTIC RABIN GAMES

In this section, we introduce our model-free RL approach
to solve Problem 1. First, we describe the product game
construction, a key step in reducing the problem of satisfying
an LTL specification into the problem of satisfying a Rabin
condition. We then consider the case where the DRA derived
from the LTL objective ϕ has a single Rabin pair, and
introduce our rewarding and discounting mechanisms based
on it. We show that maximization of the discounted reward
maximizes the minimal probability of satisfying the single
pair Rabin condition, and thus the initial LTL objective.
Finally, we provide a generalization to Rabin conditions with
multiple pairs (k>1) with a lower bound on the satisfaction
probabilities; thereby allowing the use of our method for all
possible LTL specifications.

A. Product Game Construction
By forming an augmented state space, Problem 1 can be

reduced into finding a memoryless control strategy. Specifi-
cally, we compose the states of the game G with the states of
the DRA A derived from the LTL specification ϕ. Then, the
goal in this space is to satisfy the Rabin acceptance condition,
for which memoryless control strategies suffice [35].

Definition 4 (Product Game): A product game G×=(S×,
(S×µ , S

×
ν ), A×, P×, s×0 ,Acc×) of a labeled turn-based

stochastic game G=(S, (Sµ, Sν), A, P, s0,AP, L) and a DRA
A = (Q, 2AP, δ, q0,Acc) is defined as follows: S×=S×Q is
the set of augmented states, the initial state s×0 is 〈s0, q0〉,
S×µ =Sµ×Q and S×ν =Sν×Q are the sets of augmented
controller and environment states, respectively; A×=A is
the set of actions; P×:S××A××S×→[0, 1] is the transition
function such that

P×(〈s, q〉, a, 〈s′, q′〉)=

{
P (s, a, s′) if q′=δ(q, L(s))

0 otherwise;

and Acc× is a set of k accepting pairs {(C×i , B
×
i )}ki=1 where

C×i =Ci×Q and B×i =Bi×Q.
Similarly to DRAs, a path σ× of the product game G×

satisfies the Rabin condition if there exists i, such that
inf(σ×)∩C×i =∅ ∧ inf(σ×)∩B×i 6=∅. Finally, we refer to a
product game with k accepting pairs as a Rabin(k) game.

There is a one-to-one correspondence between the paths
in the product and original game. Similarly, a strategy for the
product game induces a strategy in the original game and vice
versa. However, the corresponding strategies in the original
game require additional memory described by the DRA; i.e.,
the strategy in the original game may not be memoryless. Yet,
the probability of satisfying the Rabin condition under any
strategy pair in the product game is equal to the probability
of satisfying the LTL formula in the original game under
the corresponding strategy pair. Hence, in the rest of the
section we focus on the product games, i.e., stochastic Rabin
games; to simplify our notation, we omit the superscript ×

and use G=(S, (Sµ, Sν), A, P, s0,Acc) and s ∈ S instead of
G×=(S×, (S×µ , S

×
ν ), A×, P×s×0 ,Acc×) and 〈s, q〉∈S×.

B. Rabin(1) Condition to Discounted Rewards
We start with the case where the LTL formula ϕ has one

accepting pair in the Rabin acceptance condition. In stochas-
tic Rabin(1) games, where Acc={(C,B)}, the controller
objective is to repeatedly visit some states in B and visit
the states in C only finitely many times. The environment’s
goal is to prevent this from happening, which can be also
expressed as a Rabin condition Acc′={(∅, C), (B,S)} with
two accepting pairs. Thus, pure and memoryless strategies
suffice for both players on the considered product game [35].

To solve Problem 1 for stochastic Rabin(1) games, our key
idea is to assign small rewards to the states in B to encourage
visiting B states as often as possible; but discount more
compared to the other states to eliminate the importance of
the frequency of visits. In addition, we discount even more in
the states in C without giving any rewards, which diminishes
the worth of the rewards to be obtained by visiting the states
in B. The following theorem summarizes our key results.

Theorem 1: Consider a given turn-based stochastic
Rabin(1) product game G and the return of any path σ as

Gt(σ) :=
∑∞

i=0
RB(σ[t+i]) ·

∏i−1

j=0
ΓB,C(σ[t+j]), (4)

where
∏−1
j=0 := 1, RB : S → [0, 1) and ΓB,C : S → (0, 1)

are the reward and the terminal functions defined as

RB(s):=

{
1−γB , if s∈B
0, if s/∈B

, ΓB,C(s):=


γB , if s∈B
γC , if s∈C
γ, otherwise

.

Here, γB and γC are functions of γ such that 0<γC(γ)<
γB(γ)<γ<1, and limγ→1− γB= limγ→1− γC=1, as well as

lim
γ→1−

1− γ
1− γB(γ)

= lim
γ→1−

1− γB(γ)

1− γC(γ)
= 0. (5)

Then, the value of the game vγµ,ν (i.e., the expected return
E [Gt(σ)]) for the strategy pair (µ, ν) and the discount factor
γ satisfies that for all states s ∈ S it holds that

lim
γ→1−

vγµ,ν(s) = PrGµ,ν(s |= ϕB,C); (6)

here, ϕB,C := �♦B ∧ ¬�♦C is the Rabin condition of the
DRA derived from the LTL objective ϕ.



Before proving Theorem 1, we use Lemma 1 to establish
bounds on the state values. We show that if we replace a state
on a path with a state in B, we obtain a larger or equal return;
if we replace it with a state in S \ B, we obtain a smaller
or equal return; and the return is always between 0 and 1.

Lemma 1: For any path σ and a fixed t ≥ 0, in a stochastic
game with the path return defined as in (4), it holds that

γCGt+1(σ) ≤ γGt+1(σ) ≤ Gt(σ) ≤ 1−γB+γBGt+1(σ), (7)
0 ≤ Gt(σ) ≤ 1. (8)

Proof: Due to space constraint, the proof is in [36].

Under a strategy pair (µ, ν), it is straightforward to check
the probability that a Rabin condition is satisfied in a game G
(i.e., MC Gµ,ν). All paths in the induced MC Gµ,ν eventually
reach a BSCC T∈B(Gµ,ν) and visit its states infinitely many
times. A path reaching a state in a BSCC that does not
contain any state in B or C, does not satisfy the Rabin
condition. We denote the set of all such states by UBC .
Similarly, if a path reaches a state in a BSCC without any
state in C but with a state in B, it satisfies the Rabin
condition; finally, if it reaches a state in a BSCC that
does contain a state from C, it does not satisfy the Rabin
condition. We write UB and UC to denote the set of these
states, respectively (formally defined in Lemma 2). This
reasoning reduces finding the probability of satisfying the
Rabin condition to finding the probability of reaching a state
in UB , which allows us to focus on the reachability objective
ϕUB := ♦UB instead of ϕB,C defined in Theorem 1.

We now show that the expected values of the returns (4)
(i.e., the state values) reflect the Rabin acceptance condition.

Lemma 2: For any stochastic Rabin game G with Acc =
{(C,B)} under a strategy pair (µ, ν), it holds that:

limγ→1− v
γ
µ,ν(s) = 0 if s ∈ UBC , (9)

limγ→1− v
γ
µ,ν(s) = 1 if s ∈ UB , (10)

limγ→1− v
γ
µ,ν(s) = 0 if s ∈ UC , (11)

where the sets UBC , UB and UC are defined as:
UBC := {sBC | sBC∈T, T∈B(Gµ,ν), T∩B=∅, T∩C=∅},
UB := {sB | ∃T∈B(Gµ,ν), sB∈T∩B, T∩C=∅}, (12)
UC := {sC | ∃T∈B(Gµ,ν), sC∈T∩C} (13)

Proof: Due to space constraint, the proof is in [36].

We now provide the proof of Theorem 1.

Proof: (Theorem 1) We divide the expected return of a
random path σ visiting a state s ∈ S depending on whether
it satisfies ϕUB := ♦UB or not – i.e.,

vγ(s) =E[Gt(σ) | σ[t]=s, σ|=♦UB ]Pr(σ|=♦UB)

+E[Gt(σ) | σ[t]=s, σ 6|=♦UB ]Pr(σ 6|=♦UB) (14)
for some fixed t ∈ N. Notice that σ 6|=♦UB implies
σ[t:]6|=♦UB , and σ|=♦UB implies σ[t:] |= ♦UB almost
surely. Hence, Pr(s|=♦UB) and Pr(s6|=♦UB) can be re-
placed with Pr(σ|=♦UB) and Pr(σ 6|=♦UB), respectively.

After visiting the state s at time t, let Lt be the number of
time steps until the first visit to a state in UB in (12) – i.e.,

Lt = min{τ | σ[t+τ ] ∈ UB , τ > 0}. (15)

Then, by Lemma 1, it holds that
vγ(s) ≥ E[Gt(σ) | σ[t]=s, σ|=♦UB ]Pr(s|=♦UB)

≥ E
[
γLtGt+Lt(σ) | σ[t]=s, σ|=♦UB

]
Pr(s|=♦UB)

À
≥ E

[
γLt | σ[t]=s, σ|=♦UB

]
vγ(UB)Pr(s|=♦UB)

Á
≥ γE[Lt|σ[t]=s,σ|=♦UB ]vγ(UB)Pr(s|=♦UB) =

= γlvγ(UB)Pr(s|=♦UB); (16)
here, vγ(UB) = minsB∈UB v

γ(sB), l is constant, and À and
Á hold from the Markov property and Jensen’s inequality.

Similarly, after leaving s at t, let L′t be the number of time
steps until the first time a state in UBC∪UC is reached – i.e.,

L′t = min
{
τ | σ[t+τ ] ∈ UBC ∪ UC , τ > 0

}
. (17)

Then, using Lemma 1 and the Markov property, it holds that
vγ(s)≤E[Gt(σ) | σ[t]=s, σ 6|=♦UB ]Pr(s6|=♦UB) +Pr(s|=♦UB)

≤E[1−γL
′
t

B | σ[t]=s, σ 6|=♦UB ]Pr(s6|=♦UB)+Pr(s|=♦UB)

≤1−γE[L′t|σ[t]=s,σ 6|=♦UB ]

B Pr(s6|=♦UB) + Pr(s|=♦UB)

=(1−γl
′
B)Pr(s6|=♦UB) + Pr(s|=♦UB), (18)

where l′ is some constant. The upper bound (18) and the
lower bound (16) (due to (10)) approach the probability
Pr(s|=♦UB) as γ → 1−, thereby concluding the proof.

C. Reduction to Stochastic Rabin(1) Games
To generalize our approach to Rabin conditions with k

pairs, we construct k different stochastic Rabin(1) games and
connect them with ε actions so that the controller is able to
switch between the Rabin pairs it aims to satisfy.

Definition 5 (k-copy Game): Let [n] denote the set
{1, 2, . . . , n} for a positive integer n. For a given stochas-
tic Rabin(k) game G = (S, (Sµ, Sν), A, P, s0,Acc), with
Acc={(Ci, Bi))ki=0}, a k-copy game G? = (S?, (S?µ, S

?
ν),

A?, P ?, s?0,Acc?) is a stochastic Rabin(1) game defined by:
• S? = (Sµ × [2k])∪(Sν × [k]) is the augmented state set

with S?µ = Sµ× [k] the controller and S?ν = S \S?µ the
environment states, and s?0 = 〈s0, 1〉 is the initial state;

• A? = A ∪ {εi | i ∈ [k]} ∪ {ε′} is the set of actions;
• P ? : S?×A?×S? → [0, 1] is the transition function

defined as P ?(〈s, i〉, a, 〈s′, i′〉)

=


P (s, a, s′) if a ∈ A, i = i′,

1 if s ∈ Sµ, s = s′, a = εi, i
′ = k + i,

1 if s ∈ Sν , s = s′, a = ε′, i′ = i− k,
0, otherwise;

• Acc? = {(C?, B?)} is the Rabin accepting set where
C? := {〈s, i〉 | s ∈ Ci, i ∈ [k] or s ∈ Sµ, i ∈ [2k] \ [k]},
B? := {〈s, i〉 | s ∈ Bi, i ∈ [k]}.

Intuitively, the k-copy game G? consists of k exact copies
of the game G for each accepting pair, and a dummy state
〈s, i+k〉 for every controller state s∈Sµ for each copy i∈[k].
The controller can choose an εj in a state 〈s, i〉 and makes
a transition to the dummy environment state 〈s, j+k〉 where
the environment can only take the action ε′, which makes
a transition to the controller state 〈s, j〉. The idea here is
to connect the k copies of the original game using these ε-
actions so that in any state, the controller can jump to the
j-th copy via an εj→a-dummy-state→ε′ sequence. All the



dummy states belong to C?, prohibiting the ε-actions from
being visited infinitely many times. Also, the only states be-
longing to C? and B? in the i-th copy are the ones belonging
to Ci and Bi, respectively. This allows each accepting pair
to be independently satisfied in its corresponding copy as
stated in the following theorem.

Theorem 2: Let G(j) be the stochastic Rabin(1) game
obtained from a Rabin(k) game G by replacing Acc with
{(Cj , Bj)}, and W (j) be the set of winning states such that
for any s ∈ W (j), PrG

(j)

∗ (s |= ϕBj ,Cj ) = 1. Then, for any
〈s, i〉 ∈ S?, it holds that

PrG
?

∗ (〈s, i〉 |= ϕB?,C?) = PrG
?

∗ (〈s, i〉 |= ♦V ), (19)

where V =
{
〈s′, i′〉 ∈ S? | s′ ∈

⋃k
j=0W

(j)
}

.
Proof: We prove (19) in two directions.

≥: If a state 〈s, i〉∈V , then, by definition, there exists j such
that s∈W (j). The controller can make a transition from 〈s, i〉
to 〈s, j〉 via the ε-actions and satisfy ϕB?,C? by satisfying
ϕBj ,Cj . Thus, the control strategy maximizing the reachabil-
ity probabilities in the worst case also guarantees the satis-
faction probabilities of at least the maxmin reachability pro-
babilities i.e. PrG

?

∗ (〈s, i〉 |= ϕB?,C?) ≥ PrG?∗ (〈s, i〉 |= ♦V ).

≤: All the transitions via the ε-actions pass through a state in
C?. Under any strategy pair, the BSCCs having ε-transitions
of the induced MC are rejecting. Since without some ε-
transitions, it is not possible for a BSCC to contain states
from two different accepting pairs, an accepting BSCC must
satisfy only a single pair. In addition, in the worst case, the
satisfaction probability can be maximized by maximizing the
probability of reaching a state that belongs to an accepting
BSCC for any environment strategy. Thus, such states must
be a winning state for some accepting pair, which implies
that PrG

?

∗ (〈s, i〉 |= ϕB?,C?) ≤ PrG?∗ (〈s, i〉 |= ♦V ).
Any control strategy µ? in G? has a corresponding finite-

memory strategy µ in the Rabin(k) game G, which can be
captured by a deterministic finite automaton (DFA) with
k states. In state s, the state of the DFA changes from
state i∈[k] to j∈[k], if µ?(〈s, i〉)=εj ; the DFA state stays
the same and the control strategy µ chooses action a∈A if
µ?(〈s, i〉)=a. If µ? is a maximin strategy for G? then under
the induced strategy µ, the controller satisfies the acceptance
condition with probability that is not lower than the proba-
bility of reaching a winning state of an accepting pair.

Corollary 1: A maximin control strategy for G? of a
stochastic Rabin(k) game G induces a control strategy µ
for G such that, for any environment strategy ν,

Prµ,ν (G |= ϕAcc) ≥ Pr∗ (G |= ♦W ) , (20)
where ϕAcc :=

∨
(Bi,Ci)∈Acc (�♦Bi∧¬�♦Ci) , and W :=⋃k

i=1W
(i), with W (i) defined as in Theorem 2.

Proof: For any environment strategy ν in G we can con-
struct a corresponding environment strategy ν? in G? such
that ν?(〈s, i〉) = ν(s) for all i ∈ [k] and ν?(〈s, i〉) = ε′ for
all [2k] \ [k]. Note that the strategy pairs (µ, ν) and (µ?, ν?)
induce the same MCs. Since satisfying (Cj , Bj) satisfies
ϕAcc, we have Prµ,ν (G |= ϕAcc) ≥ Prµ?,ν? (G? |= ϕB?,C?),
which combined with Theorem 2 concludes the proof.

The induced control strategy µ guarantees a satisfaction
probability that is larger than or equal to Pr∗ (G |= ♦W ).

Note that computing the winning states in stochastic Rabin
games is NP-Complete in the number accepting pairs [35].
Thus, it is unlikely to construct a stochastic Rabin(1) game
from any given stochastic Rabin(k) game without an expo-
nential blowup in the number of states.

D. Controller Synthesis via Reinforcement Learning
We now state the main result of our approach.
Theorem 3: For a given stochastic Rabin(k) game, there

exists a γ′ such that for any γ ∈ (γ′, 1), the minimax-Q
using the reward and the discount functions in Theorem 1 is
guaranteed to converge to a strategy µ satisfying (20).

Proof: The claim directly follows from Theorem 1,
Corollary 1, and the fact that pure and memoryless strategies
are finite and sufficient for both the controller and the
environment in stochastic Rabin(1) games [35].

For a given stochastic game and an LTL specification, we
reduce the control synthesis problem to finding a maximin
controller strategy in a stochastic Rabin(k) game G using
the automata-based approach from Sec. III-A. This is further
reduced to finding a strategy that maximizes the probability
of satisfying a single Rabin pair in the worst case, in a
stochastic Rabin(1) game G? using the method from Sec. III-
C. Finally, we transform the objective of satisfying of a Rabin
pair to a discounted reward maximization objective (Sec. III-
B), allowing the use of RL to synthesize controllers.

Algorithm 1 summarizes the steps of our approach. Here,
α is the learning rate and the bold s character denotes a
state vector consisting of the state of the original game,
the DRA state, and the index of Rabin pair. After the con-
struction of G?, the algorithm performs minimax-Q learning.
In each iteration of learning, the algorithm derives an ε-
greedy strategy pair, which means that under these strategies,
the controller and the environment randomly choose their
actions with probability of ε, as well choose their best
action with probability of 1−ε. After the convergence, the
algorithm returns a maximin control strategy µ?∗ for G?,
which induces a finite-memory strategy for the original game,
which guarantees the lower bound provided in Corollary 3.

IV. EXPERIMENTAL RESULTS

Our RL-based control synthesis framework was imple-
mented as a software tool [37] in Python; we used Rabinizer
4 [38] to translate LTL formulas into DRAs, and minimax-Q
learning using the presented reward and discount functions.

During learning, ε-greedy strategies are followed by both
players after starting in a random state, and the episodes
are terminated after 1K steps. We set the parameter ε and
the learning rate α to 0.5 and gradually decreased them
to 0.05 during learning; we used the discount factors of
γC=1−(0.01), γB=1−(0.01)2 and γ=1−(0.01)3.

We considered robot planning tasks in 2-D grid worlds. A
mobile robot can move to adjacent four cells in a single step
using actions: North, South, East and West. When the robot
tries to move to a cell with an obstacle, it hits the obstacle and
stays in its previous position; once it moves to an absorbing
cell it cannot leave it. In the figures, obstacles and absorbing
cells are represented by filled and empty circles. Finally, each
cell is labeled with a set of atomic propositions.



Algorithm 1: Model-free RL for control synthesis in stochas-
tic games from LTL specifications.

Input: LTL formula ϕ, stochastic game G
Translate ϕ to a DRA Aϕ
Construct the product G× of G and Aϕ
Reduce G× to G?; Initialize Q(s, a) on G?
for t = 0, 1, . . . , T do

Derive an ε-greedy strategy pair (µ?, ν?) from Q

Take the action at ←
{
µ?(st), st∈S?µ
ν?(st), st∈S?ν

Observe the next state st+1

Q(st, at)← (1− α)Q(st, at) + αR(st)

+αΓ(st) ·
{

maxa′ Q(st+1, a
′), st+1∈S?µ

mina′ Q(st+1, a
′), st+1∈S?ν

end for
return a greedy control strategy µ?∗ from Q

None Both R�ght Left

Fig. 2: The environment actions for control action North. The arrow
lengths are proportional to the movement direction probabilities.
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Fig. 3: The derived strategy: (a) from b to c, and (b) from c to b,
under which ϕ1 from (21) is almost surely satisfied, independently
from the environment. The most likely paths are in a lighter blue.

A. Robust Control Design
In our first case study, the robot could unpredictably

move in a direction orthogonal to the intended direction. We
model this source of nondeterminism as the environment,
observing the actions of the controller and acting to minimize
the probability that the controller achieves the given task.
Specifically, the environment can reactively choose one of
the actions: None, Both, Right and Left (Fig. 2). For None,
the robot moves in the intended direction without any distur-
bance. With Both, it can go sideways with probability 0.2 (0.1
for each direction); with Right(Left), it moves as intended
with probability of 0.9 and right(left) with probability of 0.1.

The control objective is to visit a state labeled with b and
a state labeled with c repeatedly; and the safe states, labeled
with either d or e, should not be left after a certain time, i.e.,

ϕ1 = �♦b ∧�♦c ∧ (♦�d ∨ ♦�e), (21)
which we translated into a DRA with two accepting pairs.

Fig. 3 shows the grid world and the derived strategy after
128K episodes. The objective cannot be satisfied by visiting
the states (with b and c) at the top-left or top-right corner,
since the environment could force the robot to leave the safe
states. The only way to achieve the task is going from the
state labeled with b to the state c and vice versa without
leaving the safe states. With the strategy in Fig. 3, the robot
does not move to the top row once leaving it, and does
not visit the unsafe state in the middle regardless of the
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Fig. 4: The control strategies for ϕ2. The state values, represented
by the shades of blue (the darker, the higher value), also capture
how likely the controller satisfies the objective.

environment actions. With the strategies in Fig. 3(a),(b), the
robot eventually reaches the states with b and c, respectively.

B. Avoiding Adversary
In this study, robot movement is not affected by the

environment. Instead, the robot moves as intended with
probability of 0.8 and goes to the right or the left side of the
intended direction with probabilities of 0.1. Another agent,
controlled by an adversary, can take the same four actions
as the controller, with the same probability distribution.

The size of the state space here is (5×5)×(5×5) = 625,
as there are two independent agents. We define the labeling

function as L(〈s1, s2〉) :=

{
L(s1), s1 6= s2,

L(s1) ∪ {a}, s1 = s2,
where

the label a represents the state when both agents are in
the same position (adversary ’catches’ the robot). The robot
objective is the same as in (21), except that it additionally
needs to avoid the adversary at all costs, i.e., ϕ2 = ϕ1∧�¬a.

Fig. 4 shows the control strategy obtained after 512K
episodes. There are four safe zones: at the top-left, at the
top-right, and two at the bottom part of the grid. The robot or
the adversary can get trapped in a sink state with probability
p ≥ 0.2 while traveling between the top and the bottom
parts of the grid. Thus, the optimal controller strategy is not
to switch zones unless the adversary is in the same zone. For
example, in Fig. 4a, if the robot is in the bottom part, the
controller should not try to move the robot to the top-right
part, a farther safe zone, because there is a chance (p ≥ 0.2)
that the adversary ends up with a sink state if (s)he tries
to move to the bottom part. If the robot is in the top-right
part, the controller should switch to the second Rabin pair
via ε2 and make the robot stay in the same zone. However,
in Fig. 4b, the robot cannot stay in the bottom part because
otherwise the adversary will eventually catch her or him.

V. CONCLUSIONS

In this paper, we introduced an RL-based approach for
synthesis of controllers from LTL specifications in stochastic
games. We reduced this problem to finding a control strategy
in a stochastic Rabin game with a single accepting pair. We
introduced a rewarding mechanism that transforms the objec-
tive of maximizing the (worst-case) probability of satisfying
the Rabin condition into maximizing the discounted reward,
and presented an RL algorithm to find such a strategy. We
also generalized our approach to any LTL specification, with
the Rabin condition having k > 1 accepting pairs, providing
a lower bound on the satisfaction probabilities.



REFERENCES

[1] Fahiem Bacchus and Froduald Kabanza. Using temporal logics to
express search control knowledge for planning. Artificial intelligence,
116(1-2):123–191, 2000.

[2] Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas.
Temporal logic motion planning for mobile robots. In Proceedings of
the 2005 IEEE International Conference on Robotics and Automation,
pages 2020–2025. IEEE, 2005.

[3] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas.
Where’s Waldo? sensor-based temporal logic motion planning. In
Proceedings 2007 IEEE International Conference on Robotics and
Automation, pages 3116–3121. IEEE, 2007.

[4] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas.
Translating structured English to robot controllers. Advanced Robotics,
22(12):1343–1359, 2008.

[5] Georgios E. Fainekos, Antoine Girard, Hadas Kress-Gazit, and
George J. Pappas. Temporal logic motion planning for dynamic robots.
Automatica, 45(2):343–352, 2009.

[6] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas.
Temporal-logic-based reactive mission and motion planning. IEEE
Transactions on Robotics, 25(6):1370–1381, 2009.

[7] Amit Bhatia, Lydia E. Kavraki, and Moshe Y. Vardi. Sampling-based
motion planning with temporal goals. In 2010 IEEE International
Conference on Robotics and Automation, pages 2689–2696. IEEE,
2010.

[8] Morteza Lahijanian, Joseph Wasniewski, Sean B. Andersson, and
Calin Belta. Motion planning and control from temporal logic
specifications with probabilistic satisfaction guarantees. In 2010 IEEE
International Conference on Robotics and Automation, pages 3227–
3232. IEEE, 2010.
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