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Abstract

The purpose of this paper is to propose a distributed control scheme to maximize area coverage by a mobile robot network
while ensuring reliable communication between the members of the team. The information that is generated at the sensors
depends on the sensing capabilities of the sensors as well as on the frequency at which events occur in their vicinity, captured
by appropriate probability density functions. This information is then routed to a fixed set of access points via a multi-hop
network whose links model the probability that information packets are correctly decoded at their intended destinations. The
proposed distributed control scheme simultaneously optimizes coverage and routing of information by sequentially alternating
between optimization of the two objectives. Specifically, optimization of the communication variables is performed periodically
in the dual domain. Then, between communication rounds, the robots move to optimize coverage. Motion control is due to
the solution of a distributed sequential concave program that handles efficiently the introduced nonlinearities in the mobility
space. Our method is illustrated in computer simulations.
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1 Introduction

The area coverage problem is related to the develop-
ment of a control plan that allows a group of mobile
agents equipped with sensing and communication capa-
bilities to spatially configure themselves in a way that
maximizes the cumulative probability that events are
detected in an area of interest. While the area coverage
problem has recently received a lot of attention, ensuring
that the collected rates of information can be efficiently
relayed to a desired set of access points for subsequent
processing is, to the best of our knowledge, still an open
problem. In this paper, we provide a distributed solu-
tion to this problem of joint coverage and communica-
tion control.

The literature related to coverage problems is quite ex-
tensive. In [3], the authors propose a distributed con-
troller based on Lloyd’s algorithm for sensing a convex
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area. In this work, it is assumed that the sensing per-
formance degrades as the distance from the sensor in-
creases. The case where the robots are equipped with
range-limited sensors is discussed in [4]. Distributed con-
trollers for coverage optimization have been proposed in
[5] that minimize the energy needed for sensing and data
processing. Coverage optimization for anisotropic sen-
sors, whose performance depends on both the distance
from the sensor and its orientation, is studied in [6–9],
while [10–13] discuss coverage of non-convex areas.

The area coverage problems discussed above typically
ignore the requirement that the information collected by
the robot sensors needs to be routed to a desired set of
destinations. Introducing this capability in the system
gives a new twist to the problem on the interface with
communication control and networking. Most of the ex-
isting approaches to communication control of mobile
robot networks employ proximity graphs to model in-
formation exchange between robots and, therefore, con-
sider the problem of preserving graph connectivity. Such
approaches involve, for example, maximization of the
algebraic connectivity of the graph [14, 15], potential
fields that model loss of connectivity as an obstacle in
the free space [16], tools from reachability analysis to
ensure connectivity in networks of mobile sensors [17],
and distributed hybrid approaches that decompose con-
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trol of the discrete graph from continuous motion of the
robots [18]. Distributed algorithms for graph connectiv-
ity maintenance have also been implemented in [19,20].
A comprehensive survey of this literature can be found
in [21].

A more realistic communication model between mobile
robots, compared to the above graph-theoretic ap-
proaches, is presented in [22,23] that takes into account
the routing of packets as well as desired bounds on
the transmitted rates. In this model, edges in the com-
munication graph are associated with the probability
that packets delivered through the corresponding links
are correctly decoded by their intended receivers. This
formulation gives rise to optimization problems to de-
termine the desired rates and routes. Related methods
for the control of wireless robot networks are proposed
in [24] and [25], where the wireless channels are modeled
using path loss, shadowing, and multi-path fading, or
evaluated using on-line techniques, respectively. Simi-
larly, the Signal to Interference ratio (SIR) is utilized
in [26] to model communication links between mobile
aerial vehicles and ground sensors that perform collab-
orative tasks.

In this paper, we assume a team of mobile robot sensors
responsible for covering a convex area of interest with
the additional requirement that the sensory information
collected by the robots can be efficiently routed to a de-
sired set of fixed access points (APs). The rate of infor-
mation generated at every sensor depends on the quality
of sensing as a function of the sensing range as well as on
the probability that events occur in the vicinity of that
sensor, captured by an appropriate probability density
function over the area of interest. This information is
then routed to the APs via a multi-hop network whose
links model the probability that information packets are
correctly decoded at their intended destinations.

The key idea in this work is to formulate the area cover-
age problem as a constrained optimization problem in the
robot positions, associated area partitions, and routing
decisions. We can then use the routing decisions to con-
trol the feasible set so that it contains the Voronoi parti-
tion as a solution, which is well-known to be optimal for
the unconstrained problem [4]. Substituting the Voronoi
partition in the constrained problem, we obtain an op-
timization problem in the robot positions and routing
decisions, which we solve in a way similar to our prior
work [22]; we decouple coverage and routing control and
alternate between optimization of the two objectives. In
particular, given a spacial configuration of the robots in
the area of interest, the communication variables are up-
dated using a distributed subgradient algorithm in the
dual domain. The update of the communication vari-
ables is then followed by robot motion in a direction that
optimizes the coverage objective. Robot motion is formu-
lated as a distributed sequential concave program, that
allows us to handle nonlinearities in the coverage objec-

tive as well as the nonlinear dependence of the communi-
cation constraints on the robot positions. As the robots
move, the optimal solution in the communication space
drifts, which introduces a possible infeasibility gap in
the primal variables. While such infeasibility gaps per-
sist, the affected robots remain stationary until feasible
routing variables are determined by the optimization in
the communication space. Following the analysis in [22],
we obtain bounds on the robot velocities that character-
ize the performance of communications. The proposed
control scheme is distributed, utilizing only information
that is locally available at the sensors.

The problem of simultaneous coverage and communica-
tion control is also addressed in [2], although in a cen-
tralized setting. In that work, the routing variables are
updated periodically in discrete time while the robot mo-
tion is performed along the negative gradient of a func-
tion that combines the coverage objective and a barrier
potential function to ensure satisfaction of the imposed
communication constraints. A related problem that con-
siders the minimization of the aggregate information de-
livered directly, in one hop, from the robots to a sink
node is addressed in [27]. Multi-hop communication in
the context of coverage is considered in [28–30]. Specifi-
cally, in [28] the objective is to minimize the energy con-
sumption in the network, so paths are sought that ensure
this minimum energy objective. In [29,30] a joint cover-
age and graph connectivity framework is developed for
robots that have limited, proximity-based communica-
tion ranges. These latter approaches differ from the one
proposed here in that we consider more realistic models
of wireless communication that involve routing of infor-
mation over a network of varying link reliabilities, and
we also ensure desired information rates that depend on
the frequency with which events occur in the sensors’
vicinity.

The rest of this paper is organized as follows. Section 2
presents the coverage problem in the presence of com-
munication constraints. The proposed control scheme is
presented in section 4 while its efficiency is examined
in section 6 through a simulation study. Conclusive re-
marks are provided in the last section.

2 Problem Formulation

Assume a team of N mobile robots responsible for
the sensing coverage of a convex and compact area
A ⊂ R2 and for the transmission of packets of in-
formation to a fixed set of K access points (APs).
The positions of all nodes are stacked in the vector
x = [xT1 , . . . ,x

T
i , . . . ,x

T
N+K ]T , where i ∈ {1, ..., N} for

the robots and i ∈ {N + 1, ..., N +K} for the APs. The
motion of the robots is assumed to be governed by the
first order differential equation:

ẋi = ui, i = 1, . . . , N, (1)
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where ui ∈ R2 stands for the control input associated
with the i-th robot.

To achieve area coverage, each robot is equipped with an
isotropic sensor whose accuracy is captured by a radi-
ally decreasing function f that is maximal at the sensor
location xi. In this context, a larger value of f means
better sensing accuracy. In particular, we choose

f(xi,q) = e−‖q−xi‖2 . (2)

Moreover, let φ(q) : A → R+ be an integrable density
function representing the probability that an event takes
place at the point q ∈ A. Then, the coverage problem
can be formulated as follows:

maximize
x

[
H(x) =

∫
A

max
i=1,...,N

f(xi,q)φ(q)dq

]
. (3)

A common geometric approach to simplify the area cost
function H is via the tessellation of the area of interest
into subregionsWi, i ∈ {1, ..., N} according to some dis-
tance metric, and the assignment of those regions to the

robots for sensing purposes. Requiring that
⋃N
i=1Wi =

A and that the sets Wi are disjoint except for their
boundary, this approach allows us to reformulate the
coverage problem (3) as:

maximize
x,W

[
H(x,W) =

N∑
i=1

∫
Wi

f(xi,q)φ(q)dq

]
, (4)

where W = {Wi}Ni=1 denotes the collection of regions
Wi assigned to the robots positioned at x.

The problem that we address in this paper is the opti-
mization of the objective H in (4), subject to commu-
nication constraints required to ensure desired informa-
tion flows from the sensor robots to the Access Points
(APs). In particular, let ri ∈ [0, 1] denote the normal-
ized average rate (information units per unit of time) at
which the i-th robot generates information. We assume
that this rate depends on both the sensing performance
over the φ-weighted areaWi and the probability that an
event will occur at each point q ∈ Wi. Using R0 to de-
note the transmission rate of the terminals’ radios, the
effective rate at which information is generated at sensor
i is:

ri(xi,Wi) = R0

∫
Wi

f(xi,q)φ(q)dq. (5)

This information is then routed to the APs via a multi-
hop network whose links model the probability that
information packets are correctly decoded at their in-
tended destinations. Letting R(xi,xj) denote this prob-
ability, that a packet transmitted by the i-th robot is
correctly decoded by the j-th node, the effective trans-
mission rate from i to j isR0R(xi,xj). This rate denotes

the rate of information that is successfully conveyed
through this link. To simplify notation, we assume all
robots use the same transmission rate R0. In fact, we
hereafter work with normalized rates by making R0 = 1.
This means that rates are measured as (dimensionless)
fractions of the transmission rate R0.

Packets generated at terminal i can be conveyed
to the APs either directly, if R(xi,xj) > 0 for
j ∈ {N + 1, . . . , N +K}, or through a multi-hop com-
munication path. We model this process using routing
decisions Tij ∈ [0, 1] that represent the fraction of time
that node i communicates with robot j. Upon genera-
tion or arrival from another robot, packets are stored
in a queue at every robot i and they leave this queue
provided they are transmitted and correctly decoded by
any other node j. The normalized rate at which packets
leave the queue at the i-th node and are sent to node j
is TijR(xi,xj), where we assume that the transmission
and the decoding processes are independent events.
Then, the average rate at which packets leave the i-th
queue is:

routi =

N+K∑
j=1

TijR(xi,xj). (6)

Similarly, the average rate at which packets arrive at the
i-th queue is:

rini = ri(xi,Wi) +

N∑
j=1

TjiR(xj ,xi). (7)

Note that the APs can only receive information which
explains the upper limits in the sums of equations (6) and
(7). To ensure that packets are eventually delivered to
the APs, we require that there are no unstable queues in
the network. A queuing network is considered unstable if
the number of packets stored in the queues grows linearly
as t → ∞, as defined in [31]. Since unstable queuing
networks are typically composed of supercritical queues,
i.e., queues for which it holds that routi − rini < 0, we
require that

ci(xi,Wi, t) = routi − rini (8)

=

N+K∑
j=1

TijR(xi,xj)−
N∑
j=1

TjiR(xj ,xi)− ri(xi,Wi) ≥ 0

for all i ∈ {1, . . . , N} and for all time t, where t ∈
RN(N+K) is a vector that stacks the routing decisions
Tij of all robots at time t. Our goal is to determine robot
positions x, an associated partition of the spaceW, and
routing decisions t, that optimize the coverage objec-
tive H while ensuring satisfaction of the constraints (8).
Note that for a given spatial configuration x, the set of
constraints (8) may be satisfied by various routing vari-
ables Tij . Introducing a strictly concave objective func-
tion Vij(Tij) associated with the variable Tij , we can en-
sure uniqueness of the variables Tij . Incorporating such
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an objective function and the routing constraints (8) in
the optimization problem (4), we obtain the following
constrained coverage problem:

maximize
x,t,W

H(x,W) +

N∑
i=1

N+K∑
j=1

Vij(Tij) (9)

subject to ci(xi,Wi, t) ≥ 0
N+K∑
j=1

Tij ≤ 1, 0 ≤ Tij ≤ 1, ∀j

where the constraints in (9) hold for all robots
i ∈ {1, . . . , N}. In (9), we have also introduced the con-
straint 0 ≤ Tij ≤ 1, since the variables Tij represent frac-

tions of time, as well as the constraint
∑N+K
j=1 Tij ≤ 1,

which ensures that the sum of time shares at node i
does not exceed 1. Finally for the strictly concave objec-
tive functions Vij , we select Vij = −wijT 2

ij , wij > 0 in
order to encourage packet splitting over different paths
increasing in this way the robustness to link failures.

In the absence of the constraints, it is well known that the
objective function H in (9) is maximized if the partition
Wi is chosen to be the Voronoi partition of the space;
see Proposition 2.13 in [32]; defined as:

Definition 1 ( [33]) The Voronoi diagram generated
by a set of points located at {x1, . . . ,xN}, is the set
V = {V1, ...,VN} where Vi is called the Voronoi cell of
node i and contains the points that are closer to it than
to any other node:

Vi = {q ∈ A | ‖q− xi‖ ≤ ‖q− xj‖ , ∀j 6= i}.

On the other hand, in the presence of the constraints,
the Voronoi regions are not necessarily feasible for (9)
and, therefore, the feasible optimal partition for the con-
strained problem (9) is in general different from the
Voronoi partition. However, if we are able to ensure feasi-
bility of the Voronoi partition, then this partition will be
optimal for (9). In our problem, this is possible by appro-
priately selecting the routing probabilities Tij . In par-
ticular, we replace the partitionW in (9) by the Voronoi
partition V, and then solve for routes Tij that satisfy the
constraints. This gives rise to the following problem:

maximize
x,t

[
P (x, t) = H(x) +

N∑
j=1

N+K∑
j=1

Vij(Tij)

]
(10)

subject to ci(x, t) ≥ 0
N+K∑
j=1

Tij ≤ 1, 0 ≤ Tij ≤ 1, ∀j

where again the constraints in (10) hold for all robots
i ∈ {1, . . . , N}. Comparing to (4) and (8), in (10) we
have dropped the dependence of the objectiveH and the
constraints ci on the Voronoi partition V. The reason is
that, unlike any arbitrary partitionW, the Voronoi par-
tition is completely determined by the robot positions x.
Note also that for the computation of the rate ri(x) in
the constraint ci(x, t) ≥ 0 only information acquired by
the set of Delaunay neighbors denoted by Di is required,
where Di = {j 6= i | Vi ∩ Vj 6= ∅ (non-singleton)}. Note
that for a fixed spatial configuration of the robots x, the
reliabilities R(xi,xj) are fixed and, therefore, the prob-
lem in (10) attains a simple concave form. Throughout
the rest of the paper, we assume that the optimization
problem in (10) is initially feasible given the initial net-
work configuration, i.e., that paths exist that can sup-
port the desired rates of information between all nodes
and the access points. This can be achieved by, e.g.,
starting at a configuration at which all robots are close
to the APs.

3 Distributed Optimal Communication

A centralized solution of (10), as in [2], can incur large
communication cost and delays due to the need of iden-
tifying the network topology and communicating it to
all robots. Therefore, a distributed solution is preferred,
where (10) is solved locally across the group of nodes. In
particular, given fixed robot positions x and following
the steps of [22], we define the Lagrangian of (10) as 1

Lx(λ, t) =

N∑
i=1

N+K∑
j=1

Vij(Tij) (11)

+

N∑
i=1

λi

[N+K∑
j=1

TijR(xi,xj)−
N∑
j=1

TjiR(xj ,xi)−ri(x)

]
,

where λ ∈ RN is a column vector of the Lagrange mul-
tipliers. Then the dual function is defined as

gx(λ) = max∑N+K

j=1
Tij≤1, ∀i∈1,...,N

Lx(λ, t). (12)

and the dual problem becomes

Dx = min
λ≥0

gx(λ).

Since for a fixed spatial configuration x the problem in
(10) is concave, it holds that Px = Dx, where Px is the
solution of (10) for fixed x. Therefore, we can equiva-
lently work with the dual problem.

1 Since we assume fixed robot positions x, the term H(x)
in the objective function of (10) is a constant; therefore, for
the sake of simplicity, in the construction of the Lagrangian,
it can be ignored.
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To implement a gradient descent algorithm in the dual
domain, we need to define first the primal Lagrangian
maximizers as:

{Tx,ij(λ)}∀i,j = argmax∑N+K

j=1
Tij≤1

Lx(λ, t). (13)

Then, the i-th component of the gradient of the dual
function (12) is given by:

[∇gx(λ)]i =

N+K∑
j=1

Tx,ijR(xi,xj)

−
N∑
j=1

Tx,jiR(xj ,xi)− ri(x). (14)

Note that the Lagrangian defined in (11) can be ex-
pressed as a sum of local Lagrangians Lx,i through
reordering its terms, which depend only on variables
{Tij}Nj=1, i.e.,

Lx(λ, t) =

N∑
i=1

Lx,i(λ, t),

where

Lx,i(λ, t) = −λiri(x)

+

N∑
j=1

[Vij(Tij) + TijR(xi,xj)(λi − λj)]

+

N+K∑
j=N+1

[Vij(Tij) + λiTijR(xi,xj)] . (15)

Since the variables {Tij}Nj=1 appear only in Lx,i, find-
ing the primal variables that maximize the global La-
grangian is equivalent to computing the maximizers of
the local Lagrangians in (15),

{Tx,ij(λ)}N+K
j=1 = argmax∑N+K

j=1
Tij≤1

Lx,i(λ, t). (16)

Introducing finally an index k and denoting by tk the
time instants at which the variables are updated, we
can write the following distributed gradient descent al-
gorithm in the dual domain:

Primal Iteration For a given spatial configuration
x(tk) and Lagrange multipliers λ(tk), compute La-

grangian maximizers {Tx(tk),ij}N+K
j=1 according to (16)

as:

{Tx,ij(tk)}N+K
j=1 = argmax∑N+K

j=1
Tij≤1

Lx(tk),i(λ(tk), t). (17)

Dual Iteration Given the primal variables {Tx,ij(tk)}N+K
j=1

from (17), update the dual variables as:

λi(tk+1) = P
[
λi(tk)− ε

(N+K∑
j=1

Tij(tk)R(xi(tk),xj(tk))

−
N∑
j=1

Tji(tk)R(xj(tk),xi(tk))− ri(x)

)]
, (18)

where P denotes the projection to the non-negative or-
thant. Note, that the algorithm (17)-(18) is distributed,
since it requires only the Lagrange multipliers λj (equa-
tion (17)) and the routing variables Tji (equation (18))
from robots for which Rij 6= 0. In the next section, we
integrate communication control with robot mobility for
area coverage maximization.

Remark 2 (Primal-Dual Decomposition) In the
above analysis, the dual subgradient method [34] was
implemented in order to compute the optimal routing
decisions Tij for a given network configuration x. More
sophisticated primal-dual decomposition algorithms,
e.g., the Alternating Direction Method of Multipliers
(ADMM) [35], or the Accelerated Distributed Augmented
Lagrangian (ADAL) [36], can also be used in lieu of the
existing one, which enjoy faster convergence rates.

4 Simultaneous Coverage and Routing Control

To jointly optimize coverage and communication we pro-
pose a hybrid scheme that decouples the two control ob-
jectives and alternates between optimization of the two.
Specifically, at each time instant tk, the routing vari-
ables are updated via the distributed algorithm (17)-
(18) and during the time intervals (tk, tk+1) the robots
move towards configurations xi(tk+1) that optimize cov-
erage. Since the update (17)-(18) ensures feasibility of
the primal variables for a static network as k → ∞, for
any finite k and a mobile network, the primal variables
{Tij}N+K

j=1 are not necessarily feasible. This means that

the communication constraint ci(x(t), t) ≥ 0 may be-
come violated as the i-th robot moves from xi(tk) to
xi(tk+1). To ensure that this constraint violation does
not grow large and, therefore, that an acceptable qual-
ity of communication is maintained, every robot needs
to check feasibility of its local routing variables after ev-
ery communication update. Robots for which these rout-
ing variables are infeasible remain stationary until the
iteration (17)-(18) returns feasible routes. When feasi-
ble routes are obtained, those robots compute their next
position xi(tk+1) and start moving towards it.

To ensure that robot motion is free of collisions between
robots or between robots and the workspace boundary,
we introduce additional collision avoidance constraints

5



that the robots need to respect as they move to opti-
mize coverage. Specifically, for every time tk, we restrict
the feasible space for the next position xi(tk+1) of every
robot i to be in the associated Voronoi cell Vi(tk) ex-
cluding its boundary ∂Vi(tk). Since the Voronoi cells are
disjoint sets, except at their boundary, this constraint
will prevent any two robots from simultaneously collid-
ing at any common point q ∈ A. To construct this colli-
sion avoidance constraint note that any Voronoi cell Vi
can be expressed by the intersection of half-spaces that
include xi as

Vi(tk) =

Ei(tk)⋂
e=1

{
q | aie(tk)Tq ≤ bie(tk)

}
, (19)

where Ei(tk) is the number of edges that constitute
∂Vi(tk). Then, the feasible space for robot i at time tk
can be defined as

Fi(tk) =

Ei(tk)⋂
e=1

{
q | aie(tk)Tq ≤ bie(tk) + ρie(tk)

}
, (20)

where ρie(tk) are constants used to translate the half-
spaces that constitute the Voronoi cell Vi(tk) so that for
every e, the distance between the lines aie(tk)Tq = bie(tk)
and aie(tk)Tq = bie(tk) + ρie(tk) is equal to ρ > 0 and
Fi(tk) ⊂ Vi(tk). Then, requiring that xi(tk+1) ∈ Fi(tk)
ensures collision avoidance among the robots, since the
inter-robot distance will be always greater than or equal
to 2ρ > 0. Expressing all constraints in (20) in vector
form, we can equivalently write xi ∈ Fi(tk) as

gi(xi,x(tk)) = bi(x(tk))−Ai(x(tk))xi ≥ 0. (21)

Note that constructing the constraint in (21) requires
only information acquired by the set of Delaunay neigh-
bors of robot i. The feasible spaces that guarantee col-
lision avoidance for a simple network of three robots is
depicted in Figure 1.

Using the above construction, motion planning is via the
solution of local sequential concave programs that allow
to handle the nonlinear dependence of the constraints
and coverage objective in the optimization problem (10)
on the robot positions. In particular, assuming that all
other robots are fixed at positions xj(tk) for j 6= i and
given routing decisions t(tk), every robot i solves the
following problem:

maximize
xi

H̃(xi,x(tk)) (22)

subject to c̃i(xi,x(tk), t(tk)) ≥ 0,

‖xi − xi(tk)‖ ≤ σ,
gi(xi,x(tk)) ≥ 0,

for the next position xi(tk+1), where H̃ and c̃i are a con-
cave and linear approximation of ci and H, respectively,

ρρ

ρ
ρ

ρ
ρ

1

3

2

Fig. 1. Graphical example of the feasible sets that guarantee
collision avoidance for a network of three robots. Blue lines
determine the Voronoi cells for each robot and the yellow
colored polygonal areas stand for the sets Fi as defined in
(20).

i.e.,

c̃i(xi,x(tk), t(tk)) = (23)

= ci(x(tk), t(tk)) + (∇xi
ci(x(tk), t(tk))T (xi − xi(tk)),

and

H̃(xi,x(tk)) = (24)

= H(x(tk)) + (∇xiH(x(tk)))T (xi − xi(tk))

+ (xi − xi(tk))THk(xi − xi(tk)),

where Hk stands for a negative definite approximation
of the Hessian of H(x) evaluated at x(tk), which can be
obtained with known techniques, such as the Broyden-
Fletcher-Goldfarb-Shanno method (BFGS) [37] that
only requires the gradient of H. The distributed compu-
tation of the gradient of the coverage objectiveH will be
shown in Proposition 6. In the proposed sequential con-
cave program (22), σ > 0 denotes a trust region where
the concave and linear models in (23) and (24) are ade-
quate approximations of the coverage objective and the
communication constraint, respectively. Assuming that
the maximum robot speed is absolutely bounded as

max
i
‖ẋi‖ ≤ α, (25)

for some constant 0 < α < ∞ and letting ∆t =
maxk{tk+1− tk}, the trust region must satisfy σ ≤ α∆t.

Rewriting (1) in discrete time and letting xi(tk+1) be
the solution of (22), we obtain the controller for the i-th
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Algorithm 1 Simultaneous coverage and routing con-
trol at robot i
1: for k = 0 to∞ do
2: Compute the routing probabilities {Tij}N+K

j=1 via

the primal-dual algorithm (17)-(18);
3: if ci(x(tk), t) ≥ 0 then
4: Compute next position xi(tk+1) via the opti-

mization problem (22);
5: Move towards xi(tk+1) according to (26);
6: else
7: Stay motionless;
8: end if
9: end for

robot as

ui(t) =
xi(tk+1)− xi(tk)

∆t
, ∀t ∈ (tk, tk+1). (26)

The aforementioned control scheme is also summarized
for the i-th robot, in Algorithm 1.

Remark 3 (Voronoi cells) The distributed evaluation
of the i-th Voronoi cell in (23) can be achieved via the
algorithm presented in [3].

Remark 4 (Hessian) Computation of the Hessian in
(24) requires only local information as the termH(x(tk))
does not include the variable xi(tk+1) and, therefore, it
does not affect the optimization in (22).

Remark 5 (Computational Cost) At every itera-
tion, every robot computes the routing decisions via
the primal-dual algorithm (17)-(18) and the updated
position xi(tk+1) via the solution of the optimization
problem (22). Note that (17) and (22) are constrained,
strictly convex, quadratic programs which can be solved
in polynomial time using standard techniques [38].

4.1 Distributed Gradient Results

Observe that equations (23) and (24) require the gradi-
ents∇xiH and∇xiri, respectively. Since the positions of
the robots can never coincide due to the collision avoid-
ance constraint gi(xi,x(tk)) ≥ 0, the reformulation of
the coverage objective in (4) is valid and it is also dif-
ferentiable according to Theorem 2.2 in [4]. Therefore,
the existence of the gradient ∇xi

H(x) is guaranteed for
all time t. To obtain the gradients ∇xi

H and ∇xi
ri we

show the following results:

Proposition 6 Given the differentiable function f de-
fined in (2), a density function φ, and the Voronoi parti-
tioning of an area of interest A, the gradient of the cov-
erage objective defined in (4) can be expressed as follows:

∇xi
H(x) = 2

∫
Vi

(q− xi)e
−‖q−xi‖2φ(q)dq. (27)

PROOF. Applying Theorem 2.2 of [4] and considering
that the function f defined in (2) is continuous, we have

∇xi
H(x) =

∫
Vi

∂f(xi,q)

∂xi
φ(q)dq

= 2

∫
Vi

(q− xi)e
−‖q−xi‖2φ(q)dq, (28)

completing the proof. 2

Proposition 7 Given a differentiable function f and a
density function φ, the gradient of the function ri defined
in (5) can be expressed as follows:

∇xi
ri(x) =

∫
Vi

∂f(q,xi)

∂xi
φ(q)dq (29)

+

di∑
j=1

∫
∂Vi∩∂Vj

q− xi
‖xj − xi‖

f(q,xi)φ(q)dq,

where ∂Vi stands for the polygonal boundary of the
Voronoi cell Vi and di is the number of Delaunay neigh-
bors of robot i.

PROOF. The first steps of the proof are conceptually
similar to the proofs presented in [4, 10, 13]. Applying
the Leibniz integral rule [39] to the expression for ri in
(5), we have:

∇xi
ri =

∂

∂xi

∫
Vi
f(q,xi)φ(q)dq (30)

=

∫
Vi

∂f(q,xi)

∂xi
φ(q)dq +

∫
∂Vi

nTi
∂q

∂xi
f(q,xi)φ(q)dq,

where ni is the normal unit vector pointing outwards of
an edge of the Voronoi cell Vi.

Looking at the second integral of (30), we can decompose
the polygonal boundary ∂Vi into edges that lie in either
∂A or ∂Vi∩∂Vj , ∀j ∈ Di. Therefore, we can rewrite (30)
as follows:

∇xi
ri =

∫
Vi

∂f(q,xi)

∂xi
φ(q)dq

+

di∑
j=1

∫
∂Vi∩∂Vj

nTi
∂q

∂xi
f(q,xi)φ(q)dq

+

∫
∂Vi∩∂A

nTi
∂q

∂xi
f(q,xi)φ(q)dq. (31)

Since the points q ∈ ∂A are not affected by the robots’
motion, we have that ∂q

∂xi
= 0 for all q ∈ ∂Vi ∩ ∂A.

Consequently, the third term in (31) is zero. As for the
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second term, observe that the vector ni at points q ∈
∂Vi ∩ ∂Vj , for some j ∈ Di, can be expressed as:

ni =
xj − xi
‖xj − xi‖

.

These points q ∈ ∂Vi ∩ ∂Vj lie on the line described by
the equation:

q =
xi + xj

2
+ aijCij(xj − xi), (32)

where Cij is the skew symmetric rotation matrix

Cij =

[
0 −1

1 0

]
,

so that Cij(xj − xi) is perpendicular to (xj − xi), and
aij ∈ R is a scalar. Taking the partial derivative of (32)
with respect to xi yields:

∂q

∂xi
=

1

2
I− aijCij , (33)

where I stands for the identity matrix. Multiplying (33)
from the left by nTi , we have:

nTi
∂q

∂xi
=

1

2
nTi − aijnTi Cij

=
1

2

(xj − xi)
T

‖xj − xi‖
+ aij

(xj − xi)
T

‖xj − xi‖
CT
ij

=
1

2

(xj − xi)
T

‖xj − xi‖
+

1

‖xj − xi‖

(
qT − (xi + xj)

T

2

)
=

qT − xTi
‖xj − xi‖

, (34)

where in the third equality of (34), we have substituted
the term aij(xj − xi)

TCT
ij from (32).

Substituting equation (34) into (30) yields:

∇xiri =

∫
Vi

∂f(q,xi)

∂xi
φ(q)dq

+

di∑
j=1

∫
∂Vi∩∂Vj

q− xi
‖xj − xi‖

f(q,xi)φ(q)dq,

(35)

completing the proof of the proposition. 2

5 Algorithm Analysis

As discussed in Section 4, robot mobility can cause
persistent infeasibility gaps in the communication con-

straints in problem (10). Additional constraint viola-
tions can enter the system due to the convex approxi-
mations of the constraints ci in the sequential convex
programs (22) that are solved for motion planning.
Specifically, in this latter case, violations of the commu-
nication constraints (8) can be introduced, since (22)
can return updated robot positions xi(tk+1) that might
not necessarily satisfy the original nonlinear communi-
cation constraint ci. In this section, we obtain bounds
on problem specific parameters that result in bounded
violations of the communication constraints (8), so
that a desired performance of communications is main-
tained. In particular, we show how to select the trust
region σ > 0, robot speed α > 0, and time intervals
∆t = maxk{tk+1− tk} so that the information collected
by the mobile sensors can be reliably transmitted to the
APs, as per equation (8).

Throughout the rest of the paper, to simplify notation we
write the constraints in (8) as Axt−rx ≥ 0, where Ax ∈
RN×N(N+K) is a matrix containing the channel reliabil-
ities R(xi,xj) between adjacent robots, t ∈ RN(N+K) is
vector that stacks the routing decisions of all robots, and
rx ∈ RN is a vector containing the transmission rates for
all robots. Using this notation, the dual function defined
in (12) can be equivalently written as

gx(λ) = max
t

{
f0(t(λ)) + λT [Axt− rx]

}
. (36)

In what follows, we adopt an analysis similar to [22],
which requires the following assumptions: :

(a) The dual functions gx(λ) are strongly convex for
all x with common strong convexity parameter m,

gx(µ) ≥ gx(λ) +∇gx(λ) +
m

2
‖λ− µ‖2 . (37)

(b) The gradients of the dual function are Lipschitz
continuous with common Lipschitz constant M .

(c) The 2-norm of the dual gradients ∇gx(λ) are uni-
formly bounded for all λ and x.

(d) The 1-norm of the optimal Lagrange multipliers λ∗x
are uniformly bounded for all x.

‖λ∗x‖1 ≤ λmax. (38)

These assumptions are mild and commonly used in anal-
ysis of gradient descent algorithms, e.g., in [22]. The dual
function is strongly convex as required by Assumption
(a) if the objective functions Vij have Lipschitz gradi-
ents and the matrix AxA

T
x is full row rank. Also, for

the problem under consideration, Assumption (b) holds,
since the selected objective functions Vij = −wijT 2

ij are
strongly convex. Moreover, the bound Gmax in Assump-
tion (c) exists, since the dual gradients are given by the
constraint violations as per (14) and the primal variables
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Tij are finite. The bound on the optimal dual variables
assumed in Assumption (d) exists provided the existence
of a strictly feasible solution of (10) for a fixed x is guar-
anteed.

The following proposition describes how to choose the
trust-region size σ, the robot speed α and the time inter-
val ∆t, so that the channel reliabilities and the average
rates of information generated at the sensors at subse-
quent iterations are absolutely bounded.

Proposition 8 Assume symmetric channel reliabilities
so that R(xi,xj) = R(xj ,xi) and assume also that the
gradients∇xi

R(xi,xj) and∇xi
ri are absolutely bounded

by MR and Mr, respectively, i.e.,

max
i
‖∇xi

R(xi,xj)‖ ≤MR <∞, (39)

and
max
i,j

∥∥∇xj
rx,i
∥∥ ≤Mr <∞. (40)

Then, for any constants δ > 0 and γ > 0, choosing the
trust region σ > 0, robot speed α > 0 in (25), and the
time interval ∆t = maxk{tk+1 − tk} such that

σ ≤ α∆t ≤ min

{
δ

2MR
,

γ

NMr

}
, (41)

ensures that the channel reliabilities and the average rates
of information generated at the sensors at subsequent
iterations are absolutely bounded as

|R(xi(tk+1),xj(tk+1))−R(xi(tk),xj(tk))| ≤ δ, (42)

and ∣∣rx(tk+1),i − rx(tk),i

∣∣ ≤ γ. (43)

PROOF. Note first that the existence of finite up-
per bounds MR and Mr in (39) and (40) is ensured
by the fact that robot motion is restricted within a
bounded trust-region σ > 0 and since the Voronoi cells
are bounded sets due to boundedness of the area A.
To show this result, we need to associate the bounds
δ > 0 and γ > 0 on the rates of change of the functions
R(xi(t),xj(t)) and rx,i, respectively, with the trust
region σ > 0. We begin by looking at the reliabilities
R(xi(t),xj(t)). Observe that for all time t we have

Ṙ(xi(t),xj(t)) =

= ∇Rxi
(xi(t),xj(t))ẋi +∇Rxj

(xi(t),xj(t))ẋj

= ∇Rxi(xi(t),xj(t))(ẋi − ẋj), (44)

where in the last equality follows from the fact that
∇Rxi(xi(t),xj(t)) = −∇Rxj (xi(t),xj(t)), for sym-
metric channel reliabilities that satisfy R(xi,xj) =

R(xj ,xi). Taking the absolute value of (44) gives

|Ṙ(xi(t),xj(t))| = |∇Rxi(xi(t),xj(t))(ẋi − ẋj)|
≤ ‖∇Rxi

(xi(t),xj(t))‖ (‖ẋi‖+ ‖ẋj‖)
≤ 2MRα, (45)

where the last inequality is due to the bounds in (39)
and (25).

Expressing the quantity |R(xi(tk + ∆t),xj(tk + ∆t))−
R(xi(tk),xj(tk))| as a definite integral, we have that

|R(xi(tk + ∆t),xj(tk + ∆t))−R(xi(tk),xj(tk))| =

=

∣∣∣∣∣
∫ tk+∆t

tk

Ṙ(xi(τ),xj(τ))dτ

∣∣∣∣∣ ≤
≤
∫ tk+∆t

tk

∣∣∣Ṙ(xi(τ),xj(τ))
∣∣∣ dτ ≤

≤ 2MRα∆t, (46)

where the last inequality follows from (45). Choosing
α > 0 and ∆t > 0 so that

α∆t ≤ δ

2MR
, (47)

and substituting (47) in (46) we obtain

|R(xi(tk + ∆t),xj(tk + ∆t))−R(xi(tk),xj(tk))| ≤

≤ 2MRα∆t ≤ 2MR
δ

2MR
= δ, (48)

completing the proof of (42).

Similarly, in order to associate the trust-region σ > 0
with the bound γ > 0 we first compute the time deriva-
tive of rx(t),i as follows

ṙx(t),i =
∑

j∈Di∪{i}

∂rx(t),i

∂xj
ẋj . (49)

Taking the absolute value of (49) and applying the tri-
angle inequality yields

∣∣ṙx(t),i

∣∣ ≤ ∑
j∈Di∪{i}

∥∥∥∥∂rx(t),i

∂xj

∥∥∥∥ ‖ẋj‖ . (50)

Substituting (40) and (25) in (50) we obtain∣∣ṙx(t),i

∣∣ ≤ ∑
j∈{Di∪i}

Mrα ≤ NMrα, (51)

where the last inequality is due to the fact that
|{Di ∪ i}| ≤ N , where |·| stands for the cardinality of a
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set. Expressing the difference
∣∣rxi(tk+∆t),i − rxi(tk),i

∣∣ as
a definite integral, we have

∣∣rx(tk+∆t),i − rx(tk),i

∣∣ =

∣∣∣∣∣
∫ tk+∆t

tk

ṙx(τ),idτ

∣∣∣∣∣ ≤
≤
∫ tk+∆t

tk

∣∣ṙx(τ),i

∣∣ dτ ≤ NMrα∆t, (52)

where the last inequality holds due to (51).

Finally, selecting α > 0 and ∆t > 0 so that

α∆t ≤ γ

NMr
, (53)

and substituting (53) in (52) we obtain∣∣rx(tk+∆t),i − rx(tk),i

∣∣ ≤ NMr
γ

NMr
≤ γ, (54)

proving (43).

Combining (47) with (53) and using the fact that σ ≤
α∆t (see also Section 4), we obtain (41), as desired. 2

Proposition 8, along with the following two results, can
be used to characterize the performance of communi-
cations captured by the violations of the communica-
tion constraints (8) due to robot mobility. In particular,
Proposition 9 shows that the dual iterates λ(tk) con-
verge to a neighborhood of the optimal Lagrange mul-
tipliers λ∗x(tk) whose size can be reduced by decreasing
the bounds δ and γ. A conceptually similar result is pre-
sented in Proposition 10 showing that the constraint vio-
lation can be made arbitrarily small through decreasing
the problem parameters δ and γ. However, Proposition 8
implies that small values of the upper bounds δ and γ re-
quire a sufficiently small trust-region σ, robot speeds α,
and time intervals ∆t, with σ ≤ α∆t. Conversely, by de-
creasing the parameters in σ ≤ α∆t we can select small
enough values for δ and γ that ensure small constraint
violations. Note that these results should be interpreted
in an existential way, since values for the parameters of
our problem are difficult to obtain. The proof of Propo-
sition 9 is adapted from [22] and is presented in the Ap-
pendix for completeness. The proof of Proposition 10
can be found in [22] and is omitted.

Proposition 9 Let x(tk) denote the network configura-
tion at time tk, λ∗x(tk) the associated optimal dual vari-

ables, and λ(tk) the dual iterates obtained through the
primal-dual iteration (17)-(18). Assume that the step size
in (18) is bounded as ε ≤ 1

M , and that differences between
the channel reliabilities and the average rates of infor-
mation generated at the sensors are absolutely bounded
as defined in (8). Then, if assumptions (a)-(d) hold, the

error between the dual iterate λ(tk) and the optimal dual
variable λ∗x(tk) is bounded by:

‖λ∗x(tk) − λ(tk)‖ ≤ βk‖λ(t0)− λ∗x(t0)‖

+

√
2λmax

m(1− β)2
(Nδ + γ), (55)

where the constant β is defined as β =
√

1
1+mε .

Proposition 10 Under the assumptions of Proposition
9, the norm of the constraint violation can be bounded as
follows

P
[
rx(tk) −Ax(tk)t(tk)

]
≤Mβk

∥∥∥λ(t0)− λ∗x(t0)

∥∥∥+

√
2M2λmax

m(1− β)2
(Nδ + γ).

(56)

6 Simulation Studies

In this section we provide a simulation study to illus-
trate our proposed method. All optimization problems
are solved in Matlab using the CVX toolbox [40]. Specif-
ically, we consider a coverage task that involves a mobile
robot network consisting of N = 14 robots and K = 2
APs. The area of interest is a square with side equal to
2 units of length and the density function φ(q) is given
by the following Gaussian mixture model

φ(q) =

2∑
i=1

0.5N(µi,Σi), (57)

where N(µi,Σi) stands for a normal distribution with
mean value µi and covariance matrix Σi. In particular,
we select

µ1 = [2, 2]T , Σ1 =

[
2 0

0 2

]
,

µ2 = [0.1, 0.1]T , Σ2 =

[
2 0

0 9

]
.

Given the density function (57), the φ-weighted area of
A is

∫
A φ(q)dq = 0.64 area units.

The channel reliabilityR(xi,xj) is modeled as a decreas-
ing function of the distance between nodes i and j, i.e.,

R(xi,xj) =


1 if ‖xij‖ < l∑3
p=0 ap ‖xij‖

p
if l < ‖xij‖ ≤ u

0 if ‖xij‖ > u

, (58)
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(a) Time t = 0 (b) Time t = 4.5 (c) Time t = 9.75

Fig. 2. Evolution of a communication network consisting of N = 14 robots (black dots) and K = 2 AP (blue rhombuses)
during an area coverage task. Figures 2(a) through 2(c) show the evolution of the system at different time instants. Green
lines represent the communication links among the nodes. Their thickness depends on the value of TijR(xi,xj), i.e., thicker
lines capture higher values. A presence of two sources in the upper right and bottom left corner of the area is captured by a
higher density depicted in yellow.

where ‖xij‖ = ‖xi − xj‖ and the constants ap, p =
0, . . . , 3 are chosen so that R(xi,xj) is a differentiable
function. Notice that the model in (58) is a rough but rea-
sonable approximation of the channel quality. In prac-
tice, an accurate estimation of the channel reliability is
hard to obtain, as it depends on path loss that is a func-
tion of the distance between the source and the receiver,
shadowing due to the existence of obstacles in the prop-
agation path, and multi-path fading due to reflections,
which are difficult to predetermine. A more sophisticated
way to obtain the channel quality is presented in [41],
where it is shown that R(xi,xj) is indeed a decreasing
function of the distance between nodes. In the following
simulation studies, the limits l, u in (58) are selected to
be equal to 0.3 and 0.6 units, respectively. In what fol-
lows, we examine the impact of the trust region σ and
robot velocities α on the performance of the proposed
distributed algorithm. In the rest of this section, we se-
lect the time interval ∆t to be 10−2 time units.

First, we select the robot velocity α to be equal to 10−1

and the trust region to be σ = α∆t = 10−3. Fig. 2 de-
picts the network at different instances of its evolution
along with the quality of the communication links when
α and σ are selected as mentioned above. As the diam-
eter of the region of interest is approximately 4 times
the value of u, multi-hop communication is necessary
in order to cover the whole area as shown in Fig. 2. In
Fig. 3(a), the quantity routi − rini is plotted with respect
to time showing that the robots are able to maintain
integrity of the communication network, as defined by
equation (8). Moreover, in Fig. 4 we show the average
rate at which every robot generates information, where
the higher rates correspond to robots that are close to
the top right and bottom left corner in Fig. 2(c) due to

their proximity to the sources. In Fig. 6 the coverage
objective function is depicted, showing that it increases
monotonically as long as feasible routing variables exist
and Fig. 5 shows the evolution of the Lagrange multipli-
ers during network deployment.

Second, we increase the robot velocity and the trust
region, which are now selected as α = 5 × 10−1 and
σ = α∆t = 5 × 10−3. The quantity routi − rini and the
coverage objective are plotted with respect to time in
Figures 3(b) and 6, respectively. Notice in Figures 3(a)
and 3(b) that as we increase the trust region and the
robot velocity the constraint violation increases, which
is in agreement with the results shown in Propositions 8
and 10. Specifically, as we increase α and σ, larger val-
ues for the parameters δ and γ must be selected due to
(41), in Proposition 8, which implies a larger constraint
violation due to Proposition 10. Also, due to this larger
constraint violation, the robots stay motionless for a
larger percentage of the time required for convergence,
as shown in Figure 7, until feasible routing variables are
obtained by the primal-dual algorithm (17)-(18). Ob-
serve also in Figure 6 that the total time required for
convergence of the algorithm decreases as we increase
the trust region and the robot velocity, since in doing so,
the robots are allowed to move more during the time in-
terval (tk, tk+1). Moreover, in Figure 6, notice that the
coverage performance when the network has converged
to the final configuration is quite satisfactory, since it is
very close to the φ-weighted area of A.

7 Conclusions

In this paper, we presented a distributed control scheme
for maximizing the area coverage by a mobile sensor net-
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(b) σ = 5× 10−3

Fig. 3. Graphical depiction of the difference routi − rini for all
robots of the network when the trust region size is σ = 10−3

(Figure 3(a)) and σ = 5× 10−3 (Figure 3(b)).

work and at the same time ensuring that packets of in-
formation are reliably relayed to a set of APs. The infor-
mation generated by the sensors depends on both their
sensing capabilities and the frequency at which events
occur in their vicinity. This information is then routed
to the APs through a multi-hop network whose com-
munication links modeled channel reliabilities. A hybrid
scheme was proposed that decouples the optimization of
the coverage objective from the control of the commu-
nication variables. Particularly, the update of the com-
munication variables was performed periodically in the
dual domain and was followed by robot mobility due
to a distributed sequential concave program designed to
optimize the coverage objective. Simulation studies ver-
ified the efficacy of the proposed method.
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Fig. 4. Graphical representation of the average rate ri for all
robots of the network when σ = 10−3.
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Fig. 5. Evolution of Lagrange multipliers for all robots when
σ = 10−3.

A Appendix

A.1 Proof of Proposition 9

The proof is similar to the proof of Theorem 1 in [22].
The difference with that proof lies in that here the rates
of information rx generated at the sensors depend on
the position of the robots x and are not determined by
the primal-dual algorithm (17)-(18). Following a similar
analysis, we can apply the triangle inequality to bound
the distance ‖λ∗x(tk+1) − λ(tk)‖ as

‖λ(tk+1)− λ∗x(tk+1)‖ ≤ ‖λ(tk+1)− λ∗x(tk)‖
+ ‖λ∗x(tk+1) − λ∗x(tk)‖. (A.1)

To simplify notation, denote the spatial configuration at
time instants tk and tk+1 by x and y, respectively. In
what follows, we first derive a bound on the second term
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Fig. 6. Evolution of the coverage objective function H when
the trust region size is σ = 10−3 (blue line) and σ = 5×10−3

(green line). The red dashed line stands for the φ-weighted
area of A.

Fig. 7. Percentage of time required for convergence that each
robot remains stationary due to violations of the communi-
cation constraint, for two different trust regions.

of (A.1). Since the dual function is strongly convex by
assumption (A1), we have that

gx(λ∗y) ≥ gx(λ∗x)+∇gx(λ∗x)T (λ∗y−λ∗x)+
m

2
‖λ∗x−λ∗y‖2.

(A.2)

Moreover, since λ∗x is the minimizer of the convex func-
tion gx(λ), we have that ∇gx(λ∗x)T (λ∗y − λ∗x) ≥ 0 and,
therefore, (A.2) yields

gx(λ∗y) ≥ gx(λ∗x) +
m

2

∥∥λ∗x − λ∗y
∥∥2
. (A.3)

Similarly, we obtain that

gy(λ∗x) ≥ gy(λ∗y) +
m

2

∥∥λ∗x − λ∗y
∥∥2
. (A.4)

Adding the inequalities (A.3) and (A.4) and solving for

‖λ∗x − λ∗y‖2, we get

‖λ∗x−λ∗y‖2 ≤
1

m

[
gx(λ∗y)− gy(λ∗y) + gy(λ∗x)− gx(λ∗x)

]
.

(A.5)

Note that λ∗x is the optimal Lagrange multiplier of the
dual function gx(λ) associated with the robots’ position
x. Define by ty(λ∗x) the primal Lagrangian maximizer of
the dual function associated with robot positions y and
multipliers λ∗x. Then, we have

gy(λ∗x) = f0(ty(λ∗x)) + λ∗x
T

(Ayty(λ∗x)− ry). (A.6)

For the same multipliers λ∗x, consider that value of the
dual function gx(λ∗x) associated with positions x. Then,
we have that

gx(λ∗x) = max
t

{
f0(t) + λ∗x

T
(Axt− rx)

}
≥ f0(ty(λ∗x)) + λ∗x

T
(Axty(λ∗x)− rx). (A.7)

because given the optimal multiplier λ∗x for a spacial
configuration x, the maximum in (36) is attained when
t = tx(λ∗x). Subtracting (A.7) from (A.6) we get

gy(λ∗x)− gx(λ∗x) ≤ λ∗x
T

(Ay −Ax)ty(λ∗x)−
− λ∗x

T
(ry − rx). (A.8)

Following the same procedure, we obtain the following
upper bound for the term gx(λ∗x)− gy(λ∗y)

gx(λ∗y)− gy(λ∗y) ≤ λ∗y
T

(Ax −Ay)tx(λ∗y)−
− λ∗y

T
(rx − ry). (A.9)

Substituting the inequalities (A.8) and (A.9) in (A.5) we
get

‖λ∗x − λ∗y‖2 ≤
1

m

[
λ∗y

T
(Ax −Ay)tx(λ∗y) + λ∗x

T
(Ay −Ax)ty(λ∗x)

]
− 1

m

[
λ∗y

T
(rx − ry) + λ∗x

T
(ry − rx)

]
≤ 1

m

[∣∣∣λ∗yT (Ax −Ay)tx(λ∗y)
∣∣∣+
∣∣∣λ∗xT (Ay −Ax)ty(λ∗x)

∣∣∣]
+

1

m

[∣∣∣λ∗yT (rx − ry)
∣∣∣+
∣∣∣λ∗xT (ry − rx)

∣∣∣] (A.10)

For the first term in the last inequality in (A.10), it holds
that (cf. Lemma 1 in [22])∣∣∣λ∗yT (Ax −Ay)tx(λ∗y)

∣∣∣+
∣∣∣λ∗xT (Ay −Ax)ty(λ∗x)

∣∣∣
≤ 2Nλmaxδ. (A.11)
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To bound the second term in that inequality in (A.10)
we utilize equation (43). Specifically, equation (43) can
be written in vector form as

|rx − ry| ≤ γ1, (A.12)

where 1 is vector with all entries equal to 1 and the
absolute value is taken element-wise on vector rx − ry.
Threfore, for any λ we have that∣∣∣λT (rx − ry)

∣∣∣ ≤ γλT1 ≤ γλmax, (A.13)

where in the second inequality we have used the fact that
because all components of λ are non-negative, λT1 =
‖λ‖1 ≤ λmax.

Substituting (A.11) and (A.13) into (A.10) yields

∥∥λ∗x − λ∗y
∥∥2 ≤ 2λmax

m
(Nδ + γ). (A.14)

Next, in order to bound the first term of (A.1), the result
of (Lemma 2, [22]) is utilized. According to this Lemma
it holds that:∥∥∥λ(tk+1)− λ∗x(tk)

∥∥∥2

≤ β2
∥∥∥λ(tk)− λ∗x(tk)

∥∥∥2

(A.15)

Plugging equations (A.14) and (A.15) into (A.1) yields
the following:∥∥∥λ∗x(tk) − λ(tk)

∥∥∥ ≤ β ∥∥∥λ(tk)− λ∗x(tk)

∥∥∥
+

√
2λmax

m
(Nδ + γ). (A.16)

Applying the above inequality recursively between the
k + 1 iteration and 0 yields:∥∥∥λ∗x(tk) − λ(tk)

∥∥∥ ≤ βk+1
∥∥∥λ(tk)− λ∗x(tk)

∥∥∥
+

k∑
e=0

βe
√

2λmax

m
(Nδ + γ). (A.17)

Observing that
∑k
e=0 β

e ≤∑∞e=0 β
e = 1

1−β and shifting

the time from tk+1 to tk yields the result in (55), com-
pleting the proof.
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