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Abstract—We present a novel distributed algorithm for convex
constrained optimization problems that are subject to noise
corruption and uncertainties. The proposed scheme can be clas-
sified as a distributed stochastic approximation method, where
a unique feature here is that we allow for multiple noise terms
to appear in both the computation and communication stages
of the distributed iterative process. Specifically, we consider
problems that involve multiple agents optimizing a separable
convex objective function subject to convex local constraints and
linear coupling constraints. This is a richer class of problems
compared to those that can be handled by existing distributed
stochastic approximation methods which consider only consensus
constraints and fewer sources of noise. The proposed algorithm
utilizes the augmented Lagrangian (AL) framework, which has
been widely used recently to solve deterministic optimization
problems in a distributed way. We show that the proposed method
generates sequences of primal and dual variables that converge
to their respective optimal sets almost surely.

Index Terms—Distributed optimization, stochastic optimiza-
tion, stochastic approximation, multi-agent systems, noisy com-
munications.

I. INTRODUCTION

Distributed optimization methods [1] have recently received
significant attention due to the ever increasing size and com-
plexity of modern day problems, and the ongoing advance-
ments in the parallel processing capabilities of contemporary
computers. By decomposing the original problem into smaller,
more manageable subproblems that are solved in parallel,
distributed methods scale much better than their centralized
counterparts. For this reason, they are widely used to solve
large-scale problems arising in areas as diverse as wireless
communications, optimal control, machine learning, artificial
intelligence, computational biology, finance and statistics, to
name a few. Moreover, distributed algorithms avoid the cost
and fragility associated with centralized coordination, and pro-
vide better privacy for the autonomous decision makers. These
are desirable properties, especially in applications involving
networked robotics, communication or sensor networks, and
power distribution systems.

A classic method used for distributed optimization is that of
dual decomposition and is based on Lagrangian duality theory
[1, 2]. Dual methods are simple and popular, however, they
suffer from exceedingly slow convergence rates and require
strict convexity of the objective function. These drawbacks
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are alleviated by utilizing the augmented Lagrangian (AL)
framework, which has recently received considerable attention
as a most efficient approach for distributed optimization in
determistic settings; see e.g. [3]–[7]. Alternative algorithms
for distributed optimization include Newton methods [8, 9],
projection-based approaches [10, 11], Nesterov-like algorithms
[12, 13], online methods [14, 15], and even continuous-time
approaches [16].

In this paper we propose a distributed algorithm for convex
constrained optimization problems that are subject to noise and
uncertainties. The focus of our investigation is the following
convex problem

min

N∑
i=1

fi(xi)

subject to
N∑
i=1

Aixi = b,

xi ∈ Xi, i = 1, 2, . . . , N,

(1)

where, for every i ∈ I = {1, 2, . . . , N}, the Xi ⊆ Rni denotes
a nonempty closed, convex subset of ni-dimensional Euclidean
space, the fi : Rni → R is a convex function, and the Ai is
a matrix of dimension m× ni.

Problem (1) models situations where a set of N decision
makers, henceforth referred to as agents, need to determine
local decisions xi ∈ Xi that minimize a collection of local cost
functions fi(xi), while respecting a set of affine constraints∑N
i=1 Aixi = b that couple the local decisions between

agents. In previous work [7], we presented the Accelerated
Distributed Augmented Lagrangians (ADAL) method to solve
such problems in a distributed fashion. ADAL is a primal-
dual iterative scheme based on the augmented Lagrangian
framework. Each iteration of ADAL consists of three steps.
First, every agent solves a local convex optimization problem
based on a separable approximation of the AL, that utilizes
only locally available variables. Then, the agents update and
communicate their primal variables to neighboring agents.
Finally, they update their dual variables based on the values
of the communicated primal variables. The computations at
each step are performed in parallel. It was shown in [17] that
ADAL has a worst-case O(1/k) convergence rate, where k
denotes the number of iterations.

In this paper, we extend ADAL to address the case where
problem (1) needs to be solved distributedly in the presence of
uncertainty and noise. In particular, we consider the scenario
where: i) the agents have access only to noisy approximations
of their objective functions at each iteration or, equivalently,
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the agents can calculate only approximate subgradients of
their objective functions, and ii) noise corrupts the primal
and dual message exchanges between agents during the it-
erative execution of the method. To address this stochastic
framework, ADAL needs to be modified; we refer to the new
algorithm as the Stochastic Accelerated Distributed Augmented
Lagrangians (SADAL) method. We show that SADAL gener-
ates sequences of primal and dual variables that converge to
their optimal values almost surely (a.s.).

Our work is also directly related to the literature of stochas-
tic approximation (SA) techniques. Generally speaking, the
term SA characterizes those stochastic methods that attempt
to iteratively solve convex optimization problems based on
noisy (sub)gradient observations. SA has been an active area
of research since the 1950s, beginning with the seminal
work of [18], which introduced the Robbins-Monro algorithm
for unconstrained optimization problems and proved that the
method generates iterates that converge to the optimal solution
in the mean square sense. Since then, a significant amount of
SA literature has emerged, with some of the most represen-
tative works being [19]–[25]. Certain works follow the so-
called “limiting mean ODE” (ordinary differential equations)
technique to prove the convergence of SA schemes; see for
example [26]–[28]. On the other hand, there exists a signif-
icantly smaller number of works that considers distributed
stochastic approximation schemes. The existing literature on
such distributed approaches is mostly concerned with consen-
sus constrained optimization problems, wherein a set of agents
with separable objective functions need to agree on a common
decision vector; see, e.g., [29]–[38].

The contribution of this paper is threefold. First, we pro-
pose a distributed stochastic approximation algorithm that can
address more general constraint sets compared to the relevant
existing literature in SA which is concerned only with consen-
sus constraints. In fact, problems with consensus constraints
can be expressed in the form of (1), such that they are a special
case of the scenario under consideration here. Second, we
allow for multiple noise terms, namely four, to appear in both
the computation and communication stages of the proposed
distributed iterative method. Typically, distributed stochastic
approximation algorithms contain a single source of noise,
affecting either the computations or the communications, with
only a few works considering two noise terms simultaneously
[30]–[32].

Finally, the proposed method is based on the augmented
Lagrangian framework, for which only a limited amount of
works exist that consider it in a stochastic setting. For example,
in [37, 38] the authors examine the stability properties of the
Alternating Direction Method of Multipliers (ADMM) when
applied to consensus problems that suffer from noise in the
message exchanges. Moreover, in [39] a convergence result is
derived for the ADMM applied to problems of the form (1)
with N = 2 and noise appearing in one of the two objective
functions. In this paper we study a more general framework
than the aforementioned stochastic ADMM works, and also
provide a stronger convergence result (a.s.). Specifically, we
consider the general class of problems (1), where N is allowed
to be larger than 2, and where noise appears in all the objective

functions and all message exchanges at the same time. The
main challenge here is that AL methods are primal-dual
schemes, which means that the effects from multiple sources
of noise corruption and uncertainty propagate in-between the
two domains.

The rest of this paper is organized as follows. In section
II we discuss some essential facts regarding duality and
augmented Lagrangians. We also provide a description of the
ADAL method and recall its convergence properties. In section
III we describe the proposed SADAL algorithm and elaborate
on the specific noise terms that can appear during its iterative
execution. In section IV we establish the a.s. convergence of
SADAL. Finally, in Section V we present numerical results to
verify the validity of the proposed approach.

II. PRELIMINARIES

In this section we introduce some basic facts about solving
(1) using the augmented Lagrangian framework in a deter-
ministic setting, i.e., when the agents have exact knowledge
of the objective functions fi and when there is no noise
in the message exchanges between them (communication is
necessary when these algorithms are implemented in a dis-
tributed fashion). Moreover, we briefly discuss the distributed
ADAL method [7] to lay the ground for the development
of its stochastic counterpart, the SADAL, which will be
subsequently presented in Section III. We denote

f(x) =

N∑
i=1

fi(xi)

where x = [x>1 , . . . ,x
>
N ]> ∈ Rn with n =

∑N
i=1 ni.

Furthermore, we denote A = [A1 . . .AN ] ∈ Rm×n. The

constraint
N∑
i=1

Aixi = b of problem (1) takes on the form

Ax = b. Associating Lagrange multipliers λ ∈ Rm with that
constraint, the Lagrange function is defined as

L(x,λ) = F (x) + 〈λ,Ax− b〉 (2)

=

N∑
i=1

Li(xi,λ)− 〈b,λ〉,

where Li(xi,λ) = fi(xi)+〈λ,Aixi〉, and 〈·, ·〉 denotes inner
product. Then, the dual function is defined as

g(λ) = inf
x∈X

L(x,λ) =

N∑
i=1

gi(λ)− 〈b,λ〉,

where X = X1 ×X2 · · · × XN , and

gi(λ) = inf
xi∈Xi

[
fi(xi) + 〈λ,Aixi〉

]
.

The dual function is decomposable and this gives rise to
various decomposition methods addressing the dual problem,
which is defined by

max
λ∈Rm

N∑
i=1

gi(λ)− 〈b,λ〉. (3)
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Algorithm 1 Augmented Lagrangian Method (ALM)

Set k = 1 and define initial Lagrange multipliers λ1.
1. For a fixed vector λk, calculate x̂k as a solution of the

problem:
min
x∈X

Λρ(x,λ
k). (4)

2. If the constraints
∑N
i=1 Aix̂

k
i = b are satisfied, then stop

(optimal solution found). Otherwise, set :

λk+1 = λk + ρ

(
N∑
i=1

Aix̂
k
i − b

)
, (5)

Increase k by one and return to Step 1.

Dual methods suffer from well-documented disadvantages,
the most notable ones being their exceedingly slow conver-
gence rates and the requirement for strictly convex objec-
tive functions. These drawbacks can be alleviated by the
augmented Lagrangian framework [1, 40]. The augmented
Lagrangian associated with problem (1) is given by

Λρ(x,λ) = f(x) +
〈
λ,Ax− b

〉
+

ρ

2
‖Ax− b‖2,

where ρ > 0 is a penalty parameter. We recall the standard
augmented Lagrangian method (ALM), also referred to as the
“Method of Multipliers” in the literature [1, 40], in Alg. 1.

The convergence of the augmented Lagrangian method is
ensured when problem (3) has an optimal solution indepen-
dently of the starting point λ1. Under convexity assumptions
and a constraint qualification condition, every accumulation
point of the sequence {xk} is an optimal solution of problem
(1). It is also worth mentioning that the augmented Lagrangian
method exhibits convergence properties in non-convex set-
tings, cf. [40].

The convergence speed and the numerical advantages of
augmented Lagrangian methods (see, e.g., [40, 41]) provide a
strong motivation for creating decomposed versions of them.
However, achieving such a decomposition is not as straight-
forward as in the simple dual method, since the quadratic
term of the augmented Lagrangian introduces cross-terms
between all variables. Early specialized techniques that allow
for decomposition of the augmented Lagrangian can be traced
back to the works [42, 43]. More recent literature involves the
Diagonal Quadratic Approximation (DQA) algorithm [5, 6,
44], the Alternating Direction Method of Multipliers (ADMM)
[1, 3, 4, 45], as well as the Accelerated Distributed Augmented
Lagrangians (ADAL) method which was recently developed
by the authors in [7, 17]. The DQA method replaces each
minimization step in the augmented Lagrangian algorithm
by a separable approximation of the augmented Lagrangian
function. The ADMM methods are based on the relations
between splitting methods for monotone operators, such as
Douglas-Rachford splitting, and the proximal point algorithm
[3, 43]. In what follows we focus our discussion on the
ADAL method and briefly describe its algorithmic form and
convergence properties. For a more detailed discussion on
the differences and similarities between ADAL, DQA, and
ADMM, the interested reader is directed to [7].

Algorithm 2 Accelerated Distributed Augmented Lagrangians
(ADAL)

Set k = 1 and define initial Lagrange multipliers λ1 and initial
primal variables x1.

1. For fixed Lagrange multipliers λk, determine x̂ki for every
i ∈ I as the solution of the following problem:

min
xi∈Xi

Λ̄iρ(xi,x
k,λk). (7)

2. Set for every i ∈ I

xk+1
i = xki + τ(x̂ki − xki ). (8)

3. If the constraints
∑N
i=1 Aix

k+1
i = b are satisfied and

Aix̂
k
i = Aix

k
i , then stop (optimal solution found).

Otherwise, set:

λk+1 = λk + ρτ

(
N∑
i=1

Aix
k+1
i − b

)
, (9)

increase k by one and return to Step 1.

A. The ADAL algorithm

The ADAL method is based on defining the local augmented
Lagrangian function Λ̄iρ : Rni×Rn×Rm → R for every agent
i = 1, . . . , N at each iteration k, according to

Λ̄iρ(xi,x
k,λ) = fi(xi) +

〈
λ,Aixi

〉
(6)

+
ρ

2
‖Aixi +

j 6=i∑
j∈I

Ajx
k
j − b‖2.

ADAL has two parameters: a positive penalty parameter ρ
and a stepsize parameter τ ∈ (0, 1). Each iteration of ADAL
is comprised of three steps: i) a minimization step of all the
local augmented Lagrangians, ii) an update step for the primal
variables, and iii) an update step for the dual variables. The
computations at each step are performed in a parallel fashion,
so that ADAL resembles a Jacobi-type algorithm; see [1] for
more details on Jacobi and Gauss-Seidel type algorithms. The
ADAL method is summarized in Alg. 2.

At the first step of each iteration, each agent minimizes
its local AL subject to its local convex constraints. This
computation step requires only local information. To see this,
note that the variables Ajx

k
j , appearing in the penalty term of

the local AL (6), correspond to the local primal variables of
agent j that were communicated to agent i for the optimization
of its local Lagrangian Λ̄iρ. With respect to agent i, these are
considered fixed parameters. The penalty term of each Λ̄iρ can
be equivalently expressed as

‖Aixi +
∑j 6=i

j∈I
Ajx

k
j − b‖2

=
∑m

l=1

([
Aixi

]
l
+
∑j 6=i

j∈I

[
Ajx

k
j

]
l
− bl

)2
,

where [Ai]j denotes the j-th row of matrix Ai. The above
penalty term is involved only in the minimization computation
(7). Hence, for those l such that [Ai]l = 0, the terms∑j 6=i
j∈I

[
Ajx

k
j

]
l
−bl are just constant terms in the minimization
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step, and can be excluded. Here, [Ai]l denotes the l-th row of
Ai and 0 stands for a zero vector of proper dimension. This
implies that subproblem i needs access only to the decisions[
Ajx

k
j

]
l

from all subproblems j 6= i that are involved in
the same constraints l as i. Moreover, regarding the term
〈λ,Aixi〉 in (6), we have that 〈λ,Aixi〉 =

∑m
j=1 λj [Aixi]j .

Hence, we see that, in order to compute (7), each subproblem i
needs access only to those λj for which [Ai]j 6= 0. Intuitively
speaking, each agent needs access only to the information that
is relevant to the constraints that this agent is involved in.

After the local optimization steps have been carried out, the
second step consists of each agent updating its primal variables
by taking a convex combination with the corresponding values
from the previous iteration. This update depends on a stepsize
τ which must satisfy τ ∈ (0, 1q ) in order to ensure convergence
of the algorithm [7]. Here, q is defined as the maximum degree,
and is a measure of sparsity of the total constraint matrix A.
Specifically, for each constraint j = 1, . . . ,m, we introduce
a measure of involvement. We denote the number of agents i
associated with this constraint by qj , that is, qj is the number
of all i ∈ I : [Ai]j 6= 0. Here, 0 denotes a zero vector of
proper dimension. We define q to be the maximum over all
qj , i.e.,

q = max
1≤j≤m

qj . (10)

Intuitively, q is the number of agents coupled in the “most
populated” constraint of the problem.

The third and final step of each ADAL iteration consists of
the dual update. This step is distributed by structure, since the
Lagrange multiplier of the j-th constraint is updated according
to λk+1

j = λkj+ρτ
(∑N

i=1

[
Aix

k+1
i

]
j
−bj

)
, which implies that

the udpate of λj needs only information from those i for which
[Ai]j 6= 0. We can define, without loss of generality, a set
M⊆ {1, . . . ,m} of agents that perform the dual updates, such
that an agent j ∈M is responsible for the update of the dual
variables corresponding to a subset of the coupling constraint
set Ax = b (without overlapping agents). For example, if the
cardinality ofM is equal to the number of constraints m, then
each agent j ∈ M is responsible for the update of the dual
variable of the j-th constraint. In practical settings,M can be
a subset of I, or it can be a separate set of agents, depending
on the application.

The convergence of ADAL, relies on the following three as-
sumptions, which are mild, technical, and commonly required
in the analysis of convex optimization methods:

(a1) The functions fi : Rni → R for i ∈ I = {1, 2, . . . , N}
are convex, and the sets Xi ⊆ Rni for i ∈ I are nonempty
closed convex sets.

(a2) The Lagrange function L(x,λ), cf. (2), has a saddle point
(x∗,λ∗) ∈ Rn × Rm so that

L(x∗,λ) ≤ L(x∗,λ∗) ≤ L(x,λ∗), ∀ x ∈ X , ∀ λ ∈ Rm.

(a3) All subproblems (7) are solvable at every iteration.

Assumption (a2) implies that the point x∗ is a solution of
problem (1), the point λ∗ is a solution of (3), and the strong
duality relation holds, i.e., the optimal values of the primal

and dual problems are equal. Assumption (a3) is satisfied if
for every i = 1, . . . , N , either the set Xi is compact, or the
function fi(xi)+ ρ

2‖Aixi− b̃‖2 is inf-compact for any vector
b̃. The latter condition, means that the level sets of the function
are compact sets, implying that the set {xi ∈ Xi : fi(xi) +
ρ
2‖Aixi − b̃‖2 ≤ α} is compact for any α ∈ R.

The convergence proof of ADAL hinges on showing that
the Lyapunov/Merit function φ(xk,λk) defined by

φ(xk,λk) = ρ

N∑
i=1

‖Ai(x
k
i − x∗i )‖2 (11)

+
1

ρ
‖λk + ρ(1− τ)r(xk)− λ∗‖2

is strictly decreasing throughout the iterations k. Here, we
define the residual r(x) ∈ Rm as the vector containing the
amount of all constraint violations with respect to the primal
variable x, i.e.

r(x) =

N∑
i=1

Aixi − b.

We state the main convergence result of ADAL from [7].
Theorem 1: Assume (a1)–(a3). If the stepsize satisfies

0 < τ < 1
q , then, the sequence {φ(xk,λk)}, is strictly

decreasing. Moreover, the ADAL method either stops at an
optimal solution of problem (3), or generates a sequence of
λk converging to an optimal solution of it. Any sequence {xk}
generated by the ADAL algorithm has an accumulation point
and any such point is an optimal solution of (1).

III. STOCHASTIC ADAL

In this section we develop the SADAL algorithm that allows
for a distributed solution of (1) when: i) the local compu-
tation steps are inexact or are performed in the presence of
uncertainty, and ii) the message exchanges between agents are
corrupted by noise. The basic algorithmic structure of SADAL
is essentially the same as that of ADAL. Nevertheless, to
account for the presence of uncertainty and noise, appropriate
adaptations need to be made. SADAL is summarized in Alg.
3.

In SADAL, each agent i ∈ I receives noise-corrupted
versions of the actual primal and dual variables. We let x̃kij

and λ̃
k

i denote the noise-corrupted versions of the primal xkj
and the dual λk variables, respectively, as received by agent i
at iteration k. Consequently, the local augmented Lagrangian
function Λiρ : Rni×Rn×Rm → R of each agent i ∈ I is now
formed based on these noise-corrupted variables, cf. (12), i.e.,
it takes the form

Λi
(
xi, x̃

k
i , λ̃

k

i , ξ
k
i

)
= Fi(xi, ξ

k
i ) +

〈
λ̃
k

i ,Aixi
〉

+
ρ

2
‖Aixi +

j 6=i∑
j∈I

Ajx̃
k
ij − b‖2,

where x̃ki = {x̃ki1, . . . , x̃kiN} denotes the collection of the
noise corrupted variables x̃kij . Note that every local AL is now
defined with respect to the function Fi(xi, ξ

k
i ), which is the



5

Algorithm 3 Stochastic Accelerated Distributed Augmented
Lagrangians (SADAL)

Set k = 1 and define initial Lagrange multipliers λ1 and initial
primal variables x1.

1. For fixed Lagrange multipliers λk, determine x̂ki for every
i ∈ I as the solution of the following problem:

min
xi

Λiρ
(
xi, x̃

k
i , λ̃

k

i , ξ
k
i

)
(12)

s.t. xi ∈ Xi

2. Set for every i ∈ I

xk+1
i = xki + τk

(
x̂ki − xki

)
(13)

yk+1
i = xki +

1

q

(
x̂ki − xki

)
(14)

3. If the constraints
∑N
i=1 Aix

k+1
i = b are satisfied and

Aix̂
k
i = Aix

k
i , then stop (optimal solution found).

Otherwise, set:

λk+1 = λk + ρτk

(
N∑
i=1

Aiỹ
k+1
i − b

)
(15)

increase k by one and return to Step 1.

noise-corrupted version of the true objective function fi. Here,
the term ξki represents the uncertainty at iteration k.

Moreover, in SADAL the stepsize parameter τ has to be de-
fined as τk, cf. (13) and (15), which must be a decreasing, non-
negative sequence that is square summable, but not summable.
This decrease property of the stepsize is essential in the vast
majority of works within the relevant stochastic approximation
literature; see, e.g., [26]. Finally, SADAL introduces the
additional auxiliary variables yk+1

i = xki + 1
q (x̂ki − xki ) that

are updated locally at each agent i ∈ I, cf. (14). Note that the
difference between the yk+1

i and the xk+1
i updates lies in the

stepsize choice; we always use 1
q for the yk+1

i and τk for the
xk+1
i . The yk+1

i variables are then used for the dual update
step of SADAL, cf. (15).

In what follows, we elaborate on the specific noise terms
that appear during the iterative execution of SADAL (12)-
(15), such that we provide a specific definition for the notion
of uncertainty and noise corruption in our particular setting.
We assume that there is a probability space

(
Ω,F , P

)
, where

the set Ω is arbitrary, F is a σ-algebra of subsets of Ω, and P
is a probability measure defined on F . All σ-algebras will be
sub-σ-algebras of F , and all random variables will be defined
on this space.

Noise in the message exchanges for the formation of
the local augmented Lagrangians: At each iteration k, agent
i receives, via communication, the noise corrupted primal
variables Ajx̃

k
ij from agent j, and also the noise corrupted

dual variables λ̃
k

i according to

Ajx̃
k
ij = Ajx

k
j + vkij (16)

λ̃
k

i = λk + wk
i (17)

where the vkij : Ω → Rm, and wk
i : Ω → Rm are

random vectors of appropriate size whose entries are assumed
to be i.i.d. random variables with zero mean and bounded
variance. Essentially, vkij represents the noise corruption in the
communication of the actual primal variables Ajx

k
j of agent

j towards agent i. Similarly, wk
i denotes the noise corruption

on the dual variables λk as perceived by agent i after the
corresponding message exchanges.

Note that we formulate the message exchanges with respect
to the products Ajx

k
j , despite the fact that the xkj are the

actual variables and the matrices Aj are essentially problem
parameters. This is because each agent i does not need to
know the matrices Aj of the other agents; it is only interested
in the products Ajx

k
j . In fact, it only needs those entries of

the vector Ajx
k
j which correspond to their common coupling

constraints (cf. the pertinent discussion in section II-A).
Noise in the local computations: After receiving the com-

municated variables, each agent i determines the minimizers
x̂ki of its local augmented Lagrangian Λiρ

(
xi, x̃

k
i , λ̃

k

i , ξ
k
i

)
ac-

cording to (12). Each Λiρ
(
xi, x̃

k
i , λ̃

k

i , ξ
k
i

)
contains the function

Fi : Rni × Ω→ R, where ξi is an element of the probability
space

(
Ω,F , P

)
. We assume that each Fi(·, ξi) is a convex

function of xi for each ξi ∈ Ω, and that Fi(xi, ·) is an
integrable function of ξi for each xi ∈ Rni , i.e., we assume
that E

[
|Fi(xi, ξi)|

]
<∞ for each xi ∈ Rni . We also assume

that the functions Fi satisfy

fi(xi) = E
[
Fi(xi, ξi)

]
.

The above relation implies that the fi(xi) are convex and that
the following relation also holds (see, e.g., [46])

∂fi(xi) = E
[
∂Fi(xi, ξi)

]
,

where ∂fi(xi) and ∂xiFi(xi, ξi) denote the convex subd-
ifferentials of the convex functions fi(xi) and Fi(xi, ξi),
respectively, at a point xi. If we let sfi ∈ ∂fi(xi) denote
a subgradient of fi at the point xi, and sFi

∈ ∂Fi(xi, ξi) be a
subgradient of Fi with respect to xi, then sfi = E

[
sFi

]
also

holds, which can be equivalently expressed as

sfi = sFi
+ eki , (18)

where the noise vector eki : Ω→ Rni must satisfy E[eki ] = 0
for all iterations k. Since the functions Fi appear only in the lo-
cal computation steps (12), the above arguments reveal that, for
our particular method, the requirement fi(xi) = E

[
Fi(xi, ξi)

]
is equivalent to sfi = sFi

+ eki .
Essentially, the aforementioned formulation for noise in the

local computations of SADAL enables us to model cases
where: i) at each iteration k the agents have access only to
noisy observations Fi(xi, ξki ) of their true objective functions
fi, or ii) cases where the agents want to optimize the expected
values of the Fi’s, but have access only to sample values
Fi(xi, ξ

k
i ), or even iii) cases where the subgradients of Fi

can only be computed with an error eki at each iteration k.
Noise in the message exchanges for the dual updates:

Similar to the discussion in Section II-A, we assume that
there exists a set M⊆ {1, . . . ,m} of agents that perform the
dual updates. After the local minimization and primal update
steps have been performed, each agent i ∈ I communicates
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the updated Aiy
k+1
i variables to the agents responsible for

the dual updates. This message exchange is also corrupted by
noise, such that the received messages Aiy

k+1
i take the form

Aiỹ
k+1
i = Aiy

k+1
i + uk+1

i (19)

where uk+1
i : Ω → Rm is a random vector whose entries

are assumed to be i.i.d. random variables with zero mean and
bounded variance. Here, the entry [uk+1

i ]j corresponds to the
noise corruption on the respective actual variable [Ai]jy

k+1
i

as received by agent j ∈M after the corresponding message
exchanges.

Note that we formulate the message exchanges (19) with
respect to the products Aiỹi, following the same reasoning
as discussed above regarding the message exchanges for the
formation of the local ALs (16)-(17). Furthermore, note that
in practice if a row j of Ai is zero, then the corresponding
j-th entry of ui should also be identically zero (i.e., it has
zero mean and variance), since agent i does not need to
communicate anything for the update of the dual variable of
constraint j.

IV. CONVERGENCE ANALYSIS.
In this section we establish the almost sure convergence of

SADAL to the optimal solution of (1). We need the following
assumptions:

(A1) For every i ∈ I consider the function Fi(xi, ξi), where
Fi : Rni ×Ω→ R. We assume that Fi(·, ξi) is a convex
function of xi for each ξi ∈ Ω, and that Fi(xi, ·) is
an integrable function of ξi for each xi ∈ Rni , i.e.,
E
[
|Fi(xi, ξi)|

]
< ∞ for each xi ∈ Rni . Moreover, each

Fi satisfies the relation fi(xi) = E
[
Fi(xi, ξi)

]
, where

fi : Rni → R. It follows that fi is also convex; see,
e.g., [46]. We also assume that the sets Xi ⊆ Rni are
nonempty closed, convex sets for all i ∈ I.

(A2) The Lagrange function L(x,λ), cf. (2), has a saddle point
(x∗,λ∗) ∈ Rn × Rm:

L(x∗,λ) ≤ L(x∗,λ∗) ≤ L(x,λ∗), (20)

for every x ∈ X , and λ ∈ Rm.
(A3) All subproblems (12) are solvable at any iteration k =

1, 2, . . . .
(A4) The stepsize sequence τk satisfies

τk ∈ (0,
1

q
) ,

∞∑
k=1

τk =∞ and
∞∑
k=1

τ2k <∞. (21)

(A5) The penalty parameter ρ is strictly positive.
(A6) The noise corruption vectors eki ,v

k
ij ,w

k
i ,u

k
i , for every

i, j ∈ I, have entries which are i.i.d random variables
with zero mean. Moreover, the entries of the noise terms
vkij ,w

k
i ,u

k
i have bounded variance.

(A7) The noise terms

εki = wk
i + ρ

∑
j 6=i

vkij (22)

satisfy a.s.
∞∑
k=1

τkEk
[
‖εki ‖2

]
<∞, (23)

where Ek denotes conditional expectation with respect to
the σ-algebra pertaining to iteration k.

(A8) The noise terms in the local computation steps satisfy

eki
a.s.−→ 0.

Assumptions (A2) and (A3) are the same as in the deter-
ministic ADAL method. For the sake of clarity, we recall that
assumption (A3) is satisfied if for every i = 1, . . . , N , either
the set Xi is compact, or the function Fi(xi, ξ̃)+ ρ

2‖Aixi−b̃‖2
is inf-compact for any given ξ̃ and b̃. The latter condition,
means that the level sets of the function are compact sets, im-
plying that the set {xi ∈ Xi : Fi(xi, ξ̃)+ ρ

2‖Aixi− b̃‖2 ≤ α}
is compact for any α ∈ R.

Assumption (A4) includes the stepsize condition from
ADAL, i.e., the fact that τk < 1

q . Moreover, the conditions
that the stepsize sequence should be square-summable, but
not summable, are typical in relevant stochastic approxima-
tion literature; see, e.g., [26] for a comprehensive overview.
Assumption (A5) is the typical assumption that ρ > 0, which
is necessary in all augmented Lagrangian methods.

Assumptions (A6)-(A8) are necessary to prove the a.s.
convergence of SADAL. The zero mean assumption is a
common assumption ensuring that the presence of noise does
not introduce bias in the computations in the long run, while
the bounded variance assumption is a mild technical condition
that is needed to guarantee the convergence of the iterative
procedure. Assumption (A7) is necessary to establish the a.s.
convergence of a supermartingale sequence that we construct
to show the a.s. convergence of SADAL; similar assumptions
have been used in the existing literature, e.g., [33, 47, 48].
Assumption (A8) is used to guarantee that SADAL indeed
converges to the optimal set of the original problem (1);
see, e.g., [49]–[51] for a range of applications where this
assumption can be valid.

Essentially, assumptions (A6)-(A8) require that the noise
corruption terms appearing in the local AL computations
vanish in the limit; relation (23) also requires that the noise
terms εki vanish “quickly enough”. Note that we do not impose
any decrease conditions on the noise terms uki that appear in
the dual update step of SADAL, cf. (15) and (19). An intuitive
explanation about the different assumptions on the noise terms
can be reached if we recall that in the AL framework we
perform gradient ascent in the dual domain, where the gradient
of the dual function at each iteration is given by the residual
of the constraints. For instance, the AL method (cf. Alg.
1) can be viewed as the proximal point method applied to
the dual problem [1]. In classical stochastic gradient descent
methods it is not essential that the gradient noise terms vanish
in the limit, just that they are unbiased. This is exactly the
case here; for the noise terms uki that directly affect the
residual calculation (the gradient of the dual function) we
only require that they are unbiased, cf. assumption (A6).
However, we cannot guarantee the same unbiased behavior
for the noise terms vkij , wk

i , and eki that appear in the local
AL computations, since the effects of noise corruption can
propagate and affect the dual gradient in more complicated
ways that may cause bias. While this work constitutes a first
effort to address the presence of noise within ADAL, it is
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certainly an interesting topic to characterize the error bounds,
in terms of optimality and feasibility, for scenarios where the
aforementioned noise terms do not necessarily vanish in the
limit, or even propose alternative algorithms that allow us to
relax the decrease conditions.

To avoid cluttering the notation, in what follows we will
use the simplified notation

∑
i to denote summation over all

i ∈ I, i.e.
∑
i =

∑N
i=1, unless explicitly noted otherwise. We

use NX (x) to denote the normal cone to the set X at point x
[40], i.e.,

NX (x) = {h ∈ Rn : 〈h,y − x〉 ≤ 0, ∀ y ∈ X}.

We also define the auxiliary variables:

λ̂
k

= λk + ρr(x̂k), (24)

available at iteration k.
Note that, in the following analysis, the various primal and

dual variables at each iteration k are essentially functions of
the entire history of the generated random process up to that
iteration and, hence, are random variables. With that in mind,
recall that (Ω,F , P ) is our probability space, and let F1 ⊂
F2 ⊂ . . . denote an increasing sequence of sub-σ-algebras of
F , with Fk denoting the sub-σ-algebra pertaining to iteration
k

Fk = σ
(
{ xsi , ysi , λs, λ̄

s
, ỹsi , usi , x̂s−1i , x̃s−1i , λ̃

s−1
i ,

ξs−1i ,ws−1
i , vs−1ij , εs−1i , es−1i : i, j ∈ I, 1 ≤ s ≤ k }

)
.

(25)

The main idea behind the convergence proof is to show that
the sequence {φ(xk,λk)}, defined as

φ(xk,λk) = ρ
∑
i

‖Ai(x
k
i − x∗i )‖2 (26)

+
1

ρ
‖λk + ρ(1− 1

q
)r(xk)− λ∗‖2,

converges a.s. to some finite random variable φ̄. Note that (26)
is almost the same as (11), with the only difference being that
we have now replaced τ with its upper bound 1

q in the term
involving the dual variables. To establish the a.s. convergence
of {φ(xk,λk)} in the stochastic setting, we will make use
of the following theorem from [52], which is called the non-
negative almost-supermartingale convergence theorem.

Theorem 2: Let (Ω, F, P ) be a probability space and F1 ⊂
F2 ⊂ . . . be a sequence of σ-subfields of F . For each
k = 1, 2, . . . , let ζk, χk, ψk, ηk be nonnegative, Fk-measurable
random variables such that

E(ζk+1|Fk) ≤ (1 + ηk)ζk + χk − ψk. (27)

If
∑∞

1 ηk < ∞ and
∑∞

1 χk < ∞ hold, then limk→∞ ζk
exists and is finite almost surely, and

∑∞
1 ψk <∞.

Essentially, in what follows we prove that {φ(xk,λk)} is
such a non-negative almost-supermartingale. Then, we use this
convergence result to infer that, for almost all ω ∈ Ω, the
sequence of dual variables {λk(ω)} converges to an optimal
solution of problem (3), and that any sequence of primal

variables {xk(ω)} generated by SADAL has an accumulation
point, and any such point is an optimal solution of problem (1).
In the following lemma, we utilize the first order optimality
conditions for each local subproblem (12) to obtain a first
result towards proving the a.s. convergence of the sequence
{φ(xk,λk)}.

Lemma 1: Assume (A1)-(A3). Then, the following in-
equality holds:

1

ρ

〈
λ̂
k
− λ∗,λk − λ̂

k
〉
≥

ρ
∑
i

〈
Ai(x̂

k
i − x∗i ),

∑
j 6=i

Aj(x
k
j − x̂kj )

〉
(28)

+
∑
i

[〈
Ai(x̂

k
i − x∗i ), ε

k
i

〉
+ fi(x

∗
i )− fi(x̂ki ) + Fi(x̂

k
i , ξ

k
i )− Fi(x∗i , ξki )

]
,

where (x∗,λ∗) is a saddle point of the Lagrangian L and λ̂
k
,

x̂ki are calculated at iteration k.
Proof: The first order optimality conditions for problem (12)
imply the following inclusion for the minimizer x̂ki

0 ∈ ∂xi
Fi(x̂

k
i , ξ

k
i ) + AT

i λ̃
k

i (29)

+ ρAT
i

(
Aix̂

k
i +

∑
j 6=i

Ajx̃
k
ij − b

)
+ NXi

(x̂ki ).

We infer that subgradients skFi
∈ ∂xiFi(x̂

k
i , ξ

k
i ) and normal

elements zki ∈ NXi
(x̂ki ) exist such that we can express (29)

as follows:

0 = skFi
+ A>i λ̃

k

i + ρA>i

(
Aix̂

k
i +
∑
j 6=i

Ajx̃
k
ij−b

)
+ zki .

Taking inner product with x∗i − x̂ki on both sides of this
equation and using the definition of a normal cone, we obtain〈

skFi
+A>i λ̃

k

i + ρA>i

(
Aix̂

k
i +

∑
j 6=i

Ajx̃
k
ij − b

)
,x∗i − x̂ki

〉
=
〈
− zki ,x

∗
i − x̂ki

〉
≥ 0. (30)

Using the variables λ̂
k

defined in (24) and also substituting
x̃kij , λ̃

k

i from (16)-(17) in (30), we obtain

0 ≤
〈
skFi

+ AT
i

[
λ̂
k
− ρ

∑
j

Ajx̂
k
j

+ wk
i + ρ

(
Aix̂

k
i +

∑
j 6=i

Ajx̃
k
ij

)]
,x∗i − x̂ki

〉
=
〈
skFi

+ AT
i

(
wk
i + ρ

∑
j 6=i

vkij
)

+ AT
i

[
λ̂
k

+ ρ
(∑
j 6=i

Ajx
k
j −

∑
j 6=i

Ajx̂
k
j

)]
,x∗i − x̂ki

〉
.

From the convexity of Fi, we have that Fi(x
∗
i , ξ

k
i ) −

Fi(x̂
k
i , ξ

k
i ) ≥ sFi

(x̂i)
T
(
x∗i − x̂ki

)
, so the above inequality can



8

be expressed as

Fi(x
∗
i , ξ

k
i )− Fi(x̂ki , ξki ) +

〈
wk
i + ρ

∑
j 6=i

vkij (31)

+ λ̂
k

+ ρ
(∑
j 6=i

Ajx
k
j −

∑
j 6=i

Ajx̂
k
j

)
,Ai

(
x∗i − x̂ki

)〉
≥ 0.

The assumptions (A1) and (A2) entail that the following
optimality conditions are satisfied at the point (x∗,λ∗):

0 ∈ ∂fi(x∗i ) + A>i λ
∗ +NXi(x

∗
i ), ∀ i = 1, . . . , N. (32)

Inclusion (32) implies that subgradients s∗fi ∈ ∂fi(x
∗
i ) and

normal vectors z∗i ∈ NXi
(x∗i ) exist, such that we can express

(32) as:
0 = s∗fi + A>i λ

∗ + z∗i

Taking inner product with x̂ki − x∗i on both sides of this
equation and using the definition of a normal cone, we infer〈

s∗fi + A>i λ
∗, x̂ki − x∗i

〉
≥ 0, ∀ i = 1, . . . , N,

or, using the convexity of fi,

fi(x̂
k
i )− fi(x∗i ) +

〈
A>i λ

∗, x̂ki − x∗i

〉
≥ 0, (33)

for all i = 1, . . . , N . Denoting εki = wk
i + ρ

∑
j 6=i v

k
ij , cf.

(22), and combining (31) and (33), we obtain the following
inequalities for all i = 1, . . . , N :〈
λ∗ − λ̂

k
− εki − ρ

(∑
j 6=i

Ajx
k
j −

∑
j 6=i

Ajx̂
k
j

)
,Ai

(
x̂ki − x∗i

)〉
≥ fi(x

∗
i )− fi(x̂ki ) + Fi(x̂

k
i , ξ

k
i )− Fi(x∗i , ξki ).

Adding the inequalities for all i = 1, . . . , N and rearranging
terms, we get:〈
λ∗−λ̂

k
,
∑
i

Ai(x̂
k
i − x∗i )

〉
≥

ρ
∑
i

〈
Aix̂

k
i −Aix

∗
i ,
∑
j 6=i

Aj(x
k
j − x̂kj )

〉
(34)

+
∑
i

[〈
Ai(x̂

k
i − x∗i ), ε

k
i

〉
+ fi(x

∗
i )− fi(x̂ki ) + Fi(x̂

k
i , ξ

k
i )− Fi(x∗i , ξki )

]
.

Substituting
∑N
i=1 Aix

∗
i = b and

∑N
i=1 Aix̂

k
i −b = 1

ρ (λ̂
k
−

λk) in the left hand side of (34), we conclude that

1

ρ

〈
λ̂
k
−λ∗,λk − λ̂

k
〉
≥

ρ
∑
i

〈
Ai(x̂

k
i − x∗i ),

∑
j 6=i

Aj(x
k
j − x̂kj )

〉
+
∑
i

[〈
Ai(x̂

k
i − x∗i ), ε

k
i

〉
+ fi(x

∗
i )− fi(x̂ki ) + Fi(x̂

k
i , ξ

k
i )− Fi(x∗i , ξki )

]
,

as required. �
In the next lemma, we further manipulate the result from

Lemma 1 to bring us one step closer to proving the a.s.

convergence of the sequence {φ(xk,λk)}. To avoid cluttering
the notation, in what follows we denote the rightmost term in
(28) as

αk =
∑
i

[〈
Ai(x̂

k
i − x∗i ), ε

k
i

〉
(35)

+ fi(x
∗
i )− fi(x̂ki ) + Fi(x̂

k
i , ξ

k
i )− Fi(x∗i , ξki )

]
.

Lemma 2: Under assumptions (A1)-(A3), the following
estimate holds:∑
i

ρ
〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
+

1

ρ

〈
λk − λ∗,λk − λ̂

k
〉

≥
∑
i

ρ‖Ai(x
k
i − x̂ki )‖2 +

1

ρ
‖λ̂

k
− λk‖2 (36)

+
〈
λ̂
k
− λk, r(xk)− r(x̂k)

〉
+ αk.

Proof: Add the term ρ
∑
i

〈
Ai(x̂

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
to

both sides of inequality (28) from Lemma 1, to get

ρ
∑
i

〈
Ai(x̂

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
+

1

ρ

〈
λk − λ∗,λk − λ̂

k
〉

≥ ρ
∑
i

〈
Ai(x̂

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
+ ρ

∑
i

〈
Ai(x̂

k
i − x∗i ),

∑
j 6=i

Aj(x
k
j − x̂kj )

〉
+ αk.

Grouping the terms in the right-hand side of the above
inequality by their common factor, we transform it as follows:

ρ
∑
i

〈
Ai(x̂

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
+

1

ρ

〈
λk − λ∗,λk − λ̂

k
〉

≥ ρ
∑
i

〈
Ai(x̂

k
i − x∗i ),

∑
i

Ai(x
k
i − x̂ki )

〉
+ αk. (37)

Recall that
∑
iAi(x

k
i − x̂ki ) = r(xk)− r(x̂k). This term does

not depend on the summation over i in the right hand side of
(37). Moreover,

∑
iAix

∗
i = b. Substituting these terms at the

right-hand side of (37), yields

ρ
∑
i

〈
Ai(x̂

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
+

1

ρ

〈
λk − λ∗,λk − λ̂

k
〉

≥ ρ
〈∑

i

Ai(x̂
k
i − x∗i ), r(xk)− r(x̂k)

〉
+ αk

= ρ
〈∑

i

Aix̂
k
i − b, r(xk)− r(x̂k)

〉
+ αk

=
〈
λ̂
k
− λk, r(xk)− r(x̂k)

〉
+ αk. (38)

In a last step, we represent

(Aix̂
k
i −Aix

∗
i ) = (Aix

k
i −Aix

∗
i ) + (Aix̂

k
i −Aix

k
i )

and λ̂
k
− λ∗ = (λk − λ∗) + (λ̂

k
− λk)
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in the left-hand side of (38). We obtain∑
i

ρ
〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
+

1

ρ

〈
λk − λ∗,λk − λ̂

k
〉

≥
∑
i

ρ‖Ai(x
k
i − x̂ki )‖2 +

1

ρ
‖λ̂

k
− λk‖2

+
〈
λ̂
k
− λk, r(xk)− r(x̂k)

〉
+ αk,

as required. �

To avoid cluttering the notation, in what follows we use the
following variable

λ̄
k

= λk + ρ(1− 1

q
)r(xk). (39)

Note that λ̄k appears in the term containing the dual variables
of our stochastic Lyapunov/Merit function φ(xk,λk), cf. (26).

Lemma 3: Under the assumptions (A1)-(A3), the follow-
ing estimate holds∑
i

ρ
〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
+

1

ρ

〈
λ̄
k − λ∗,λk − λ̂

k
〉

≥
∑
i

ρ

2
‖Ai(x

k
i − x̂k)‖2 +

1

2qρ
‖λk − λ̂

k
‖2 + αk,

where the λ̄
k are defined in (39).

Proof: Add the term ρ(1− 1
q )
〈
r(xk), 1ρ (λk− λ̂

k
)
〉

= ρ(1−
1
q )
〈
r(xk),−r(x̂k)

〉
to inequality (36) to get:

∑
i

ρ
〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
+

1

ρ

〈
λ̄
k − λ∗,λk − λ̂

k
〉

≥
∑
i

ρ‖Ai(x
k
i − x̂ki )‖2 +

1

ρ
‖λ̂

k
− λk‖2 + αk (40)

+
〈
λ̂
k
− λk, r(xk)− r(x̂k)

〉
− ρ(1− 1

q
)
〈
r(xk), r(x̂k)

〉
.

Isolate the term
〈
λ̂
k
− λk, r(xk) − r(x̂k)

〉
− ρ(1 −

1
q )
〈
r(xk), r(x̂k)

〉
at the right hand side for a bit. We ma-

nipulate it to yield:〈
λ̂
k
− λk, r(xk)− r(x̂k)

〉
− ρ(1− 1

q
)
〈
r(xk), r(x̂k)

〉
= ρ

〈
r(x̂k), r(xk)− r(x̂k)

〉
− ρ(1− 1

q
)
〈
r(xk), r(x̂k)

〉
= ρ

〈
r(x̂k), r(xk)− r(x̂k)

〉
− ρ(1− 1

q
)
〈
r(xk)− r(x̂k) + r(x̂k), r(x̂k)

〉
=

1

q
ρ
〈
r(x̂k), r(xk)− r(x̂k)

〉
− (1− 1

q
)ρ‖r(x̂k)‖2

=
1

q

〈
λ̂
k
− λk,

∑
i

Ai(x
k
i − x̂ki )

〉
− (1− 1

q
)
1

ρ
‖λ̂

k
− λk‖2.

Then, (40) becomes:∑
i

ρ
〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
+

1

ρ

〈
λ̄
k − λ∗,λk − λ̂

k
〉

≥
∑
i

ρ‖Ai(x
k
i − x̂ki )‖2 +

1

qρ
‖λ̂

k
− λk‖2 (41)

+
1

q

〈
λ̂
k
− λk,

∑
i

Ai(x
k
i − x̂ki )

〉
+ αk.

The terms 1
q

〈
λ̂
k
− λk,Ai(x

k
i − x̂ki )

〉
can be bounded below

by considering

1

q

〈
λ̂
k
− λk,Ai(x

k
i − x̂ki )

〉
≥ −1

2

(
ρ||Ai(x

k
i − x̂ki )||2 +

1

q2ρ
||λ̂

k
− λk||2

)
.

Summing the inequality over all i, we observe that the quantity
|λ̂
k

j −λkj |2, where λj indicates the Lagrange multiplier of the
j-th constraint, appears at most q times. This is because

N∑
i=1

1

q

〈
λ̂
k
− λk,Ai(x

k
i − x̂ki )

〉
=

1

q

N∑
i=1

m∑
j=1

(λ̂
k

j − λkj )
[
Ai(x

k
i − x̂ki )

]
j

=
1

q

m∑
j=1

(λ̂
k

j − λkj )

N∑
i=1

[
Ai(x

k
i − x̂ki )

]
j
.

Thus, recalling that q denotes the maximum number of non-
zero blocks [Ai]j over all j, we can conclude that each term
‖λ̂

k

j − λkj ‖2, j = 1, . . . ,m appears at most q times in the
summation. This observation leads us to

N∑
i=1

1

q

〈
λ̂
k
− λk,Ai(x

k
i − x̂ki )

〉
(42)

≥ −1

2

(∑
i

ρ‖Ai(x
k
i − x̂ki )‖2 +

1

qρ
‖λ̂

k
− λk‖2

)
.

Finally, substituting (42) into (41) we get∑
i

ρ
〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
+

1

ρ

〈
λ̄
k − λ∗,λk − λ̂

k
〉

≥
∑
i

ρ

2
‖Ai(x

k
i − x̂ki )‖2 +

1

2qρ
‖λk − λ̂

k
‖2 + αk,

which completes the proof. �

Now we are ready to prove the a.s. convergence of our
Lyapunov/Merit function φ(xk,λk) by utilizing the almost-
supermartingale convergence result from Theorem 2.

Lemma 4: Assume (A1)-(A7). Then, the sequence

φ(xk,λk) =

N∑
i=1

ρ‖Ai(x
k
i − x∗i )‖2 +

1

ρ
‖λ̄k − λ∗‖2 (43)
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generated by SADAL converges a.s. to some finite random
variable φ̄. Moreover, for all i = 1, . . . , N we have

r(x̂k)
L2

−→ 0

and Aix̂
k
i

L2

−→ Aix
k
i ,

where L2

−→ denotes mean-square convergence.

Proof: First, we show that the dual update step (15) in the
SADAL method results in the following update rule for the
variables λ̄

k, which are defined in (39):

λ̄
k+1

= λ̄
k

+ τkρr(x̂k) + τkρ
∑
i

uk+1
i (44)

Indeed,

λk+1 = λk + τkρr(ỹk+1)

= λk + τkρ
[
r(yk+1) + ρ

∑
i

uk+1
i

]
= λk + τkρ

[
(1− 1

q
)r(xk) +

1

q
r(x̂k) + ρ

∑
i

uk+1
i

]
= λk + τk

[
− (1− 1

q
)ρ
(
r(x̂k)− r(xk)

)
+ ρr(x̂k) + ρ

∑
i

uk+1
i

]
= λk − (1− 1

q
)ρτk

(
r(x̂k)− r(xk)

)
+ τkρr(x̂k) + τkρ

∑
i

uk+1
i ,

where the third equality follows from the definition of the
yk+1 variables in the primal update step of SADAL, cf. (13).
Adding (1− 1

q )ρr(xk) on both sides of the above relation and
rearranging terms, we obtain

λk+1 + (1− 1

q
)ρ
[
r(xk) + τk

(
r(x̂k)− r(xk)

)]
= λk + (1− 1

q
)ρr(xk) + τkρr(x̂k) + τkρ

∑
i

uk+1
i .

The left hand side of the above is equal to λ̄
k+1 by definition

(39) and the fact that r(xk+1) = r(xk) + τk
(
r(x̂k)− r(xk)

)
.

Hence, we arrive at

λ̄
k+1

= λk + (1− 1

q
)ρr(xk) + τkρr(x̂k) + τkρ

∑
i

uk+1
i

= λ̄
k

+ τkρr(x̂k) + τkρ
∑
i

uk+1
i ,

as required.

Using (44), we can now evaluate φ(xk+1, λ̄
k+1

) as

φ
(
xk+1, λ̄

k+1)
=

=

N∑
i=1

ρ||Ai(x
k+1
i − x∗i )||2 +

1

ρ
||λ̄k+1 − λ∗||2

=

N∑
i=1

ρ||Ai(x
k
i − x∗i ) + τkAi(x̂

k
i − xki )||2

+
1

ρ
||λ̄k − λ∗ + τkρr(x̂k) + τkρ

∑
i

uk+1
i ||2.

Expanding the right hand side of the above relation, we get

φ
(
xk+1, λ̄

k+1)
=

N∑
i=1

ρ||Ai(x
k
i − x∗i )||2 +

1

ρ
||λ̄k − λ∗||2

− 2τk

[
ρ

N∑
i=1

〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
− 1

ρ

〈
λ̄
k − λ∗, ρr(x̂k) + ρ

∑
i

uk+1
i

〉]

+ τ2k

[
N∑
i=1

ρ||Ai(x̂
k
i − xki )||2 +

1

ρ
||ρr(x̂k) + ρ

∑
i

uk+1
i ||2

]
.

After expanding the very last term on the above and recalling
the definition λ̂

k
= λk + ρr(x̂k), cf. (24), we arrive at

φ
(
xk+1, λ̄

k+1)
= φ

(
xk, λ̄

k)
− 2τk

[
ρ

N∑
i=1

〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
− 1

ρ

〈
λ̄
k − λ∗, ρr(x̂k) + ρ

∑
i

uk+1
i

〉]

+ τ2k

[∑
i

ρ||Ai(x̂
k
i − xki )||2 +

1

ρ
||λ̂

k
− λk||2

+
2

ρ

〈
λ̂
k
− λk, ρ

∑
i

uk+1
i

〉
+

1

ρ
‖ρ
∑
i

uk+1
i ‖2

]
.

We use Lemma 3 to substitute the term
− 2τkρ

∑N
i=1

〈
Ai(x

k
i − x∗i ),Ai(x

k
i − x̂ki )

〉
− 2τk

ρ

〈
λ̄
k −

λ∗, ρr(x̂k)
〉

with its lower bound in the above relation, to
arrive at

φ
(
xk+1,λk+1

)
≤ φ

(
xk,λk

)
−∑

i

ρ(τk − τ2k )||Ai(x
k
i − x̂ki )||2 − (

τk
q
− τ2k )

1

ρ
||λk − λ̂

k
||2

+ 2τk

〈
λ̄
k − λ∗,

∑
i

uk+1
i

〉
+ 2τ2k

〈
λ̂
k
− λk,

∑
i

uk+1
i

〉
+ ρτ2k‖ρ

∑
i

uk+1
i ‖2 − 2τkα

k. (45)

Now, take the conditional expectation Ek (with respect to Fk)
on the above relation. First, by the definition of Fk in (25),
we get that

Ek
〈
λ̄
k −λ∗,

∑
i

uk+1
i

〉
=
〈
λ̄
k −λ∗, Ek

∑
i

uk+1
i

〉
= 0,

(46)
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where in the last equality we used the zero-mean assumption
(A6) for uk+1. Moreover, it is true that

Ek
〈
λ̂
k
− λk,

∑
i

uk+1
i

〉
= Ekρr(x̂k)T Ek

∑
i

uk+1
i = 0.

(47)
This follows from the following facts. The terms r(x̂k), and∑
i u

k+1
i are conditionally independent (recall from (19) that

uk+1 denotes the noise in the message exchanges for the dual
updates). Moreover, due to assumption (A3) the minimizers
x̂ki belong to compact sets for all i = 1, . . . , N , hence we
have that Ekr(x̂k) < ∞. Finally, assumption (A6) implies
that Ek

∑
i u

k+1
i = 0.

Thus, after taking the conditional expectation of
φ
(
xk+1,λk+1

)
with respect to Fk, and using (45)-(47),

we get that

Ekφ
(
xk+1,λk+1

)
≤ φ

(
xk,λk

)
− Ek

[∑
i

ρ(τk − τ2k )||Ai(x
k
i − x̂ki )||2

+
(τk
q
− τ2k

)1

ρ
||λk − λ̂

k
||2 − τ2kρ‖

∑
i

uk+1
i ‖2 + 2τkα

k

]
.

Consider the term −2τkEkαk, and recall from (35) that
αk =

∑
i

[〈
Ai(x̂

k
i −x∗i ), εki

〉
+fi(x

∗
i )−fi(x̂ki )+Fi(x̂

k
i , ξi)−

Fi(x
∗
i , ξi)

]
. By the definition of the functions Fi and fi, cf.

assumption (A1), we have that

Ek
[
fi(x

∗
i )− fi(x̂ki ) + Fi(x̂

k
i , ξ

k
i )− Fi(x∗i , ξki )

]
= 0, (48)

for all i = 1, . . . , N . Note that, according to the definition
of the sub-σ-algebra Fk in (25), the conditional expectation
in (48) is taken with respect to both the random variables x̂ki
and ξki . Hence, to see why (48) is true, we need to consider
the tower property of conditional expectation, which states
that for some random variable X and some sub-σ-algebras
S1 ⊂ S2 ⊂ F we have E

(
X|S1

)
= E

(
E(X|S2)|S1

)
. Now,

recall that assumption (A1) essentialy says that E
(
Fi(xi, ξi)−

fi(xi)|xi
)

= 0. Then, (48) holds true from the tower property
for S1 = Fk and S2 = Fk ∪ σ(x̂k).

Hence, we have that

−2τkEkαk = − 2τkEk
∑

i

〈
Ai(x̂

k
i − x∗i ), ε

k
i

〉
Now, by assumption (A6) we have that Ek(Aix

∗
i )
T εki = 0 =

Ek(Aix
k
i )T εki , since Ekεki = 0 and the fact that εki and xki

are conditionally independent given the definition of Fk in
(25). Thus, we can substitute Aix

∗
i with Aix

k
i in the term

involving εki in the above relation, and then use the fact that
−2
〈
Ai(x̂

k
i − xki ), εki

〉
≤ 1

C ‖Ai(x̂
k
i − xki )‖2 + C‖εki ‖2, for

any C <∞, to get

Ekφ
(
xk+1,λk+1

)
≤ φ

(
xk,λk

)
+ Ek

[
τk

N∑
i=1

( 1

C
‖Ai(x̂

k
i − xki )‖2 + C‖εki ‖2

)
−
∑
i

ρ(τk − τ2k )||Ai(x
k
i − x̂ki )||2

−
(τk
q
− τ2k

)1

ρ
||λk − λ̂

k
||2 + τ2kρ‖

∑
i

uk+1
i ‖2

]
,

which, after rearranging terms, can be expressed as

Ekφ
(
xk+1,λk+1

)
≤ φ

(
xk,λk

)
+

1

ρ

(
τ2k −

τk
q

)
Ek||λk − λ̂

k
||2 (49)

+
[
ρτ2k − (ρ− 1

C
)τk

]
Ek

N∑
i=1

||Ai(x
k
i − x̂ki )||2

+ C

N∑
i=1

τkEk‖εki ‖2 + ρτ2k Ek‖
∑
i

uk+1
i ‖2.

We can now recall Theorem 2 and observe that relation (49)
is of the form (27), with

ηk = 0,

χk = C

N∑
i=1

τkEk‖εki ‖2 + ρτ2k Ek‖
∑
i

uk+1
i ‖2

+ ρτ2kEk
N∑
i=1

||Ai(x
k
i − x̂ki )||2 +

τ2k
ρ
Ek||λk − λ̂

k
||2,

ψk =
(
ρ− 1

C

)
τkEk

N∑
i=1

||Ai(x
k
i − x̂ki )||2

+
τk
qρ

Ek||λk − λ̂
k
||2.

By assumption (A5), we have that (ρ − 1
C ) > 0, and by

assumption (A4), we have that τk
q > 0. Hence, the variable

ψk is nonnegative at all times, as required for the application
of Theorem 2. Moreover, by assumption (A6), we have that
Ek‖

∑
i u

k+1
i ‖2 ≤ M1 < ∞ for all iterations k = 1, 2, . . . ,

and by assumption (A4) we have that
∑∞
k=1 τ

2
k < ∞, from

which we infer that
∑∞
k=1 ρτ

2
k Ek‖

∑
i u

k+1
i ‖2 <∞.

Furthermore, note that the random variables ‖Ai(x
k
i−x̂ki )‖2

for all i ∈ I, and ‖λk − λ̂
k
‖2 = ‖ρr(x̂k)‖2 are bounded for

every k. This is because the iterates x̂ki belong to compact
sets for every i ∈ I and all k, due to assumption (A3).
From the fact that xk+1

i is a convex combination between
x̂ki and xki , cf. (13), and given that the initial value x1

i

is bounded, it is straightforward to show by induction that
the sequences xki remain bounded for every i ∈ I. Hence,
we have that Ek

∑N
i=1 ||Ai(x

k
i − x̂ki )||2 ≤ M2 < ∞, and

Ek||λk− λ̂
k
||2 ≤M3 <∞ for all iterations k = 1, 2, . . . . We

infer that
∑∞
k=1

[
ρτ2kEk

∑N
i=1 ||Ai(x

k
i −x̂ki )||2 +

τ2
k

ρ Ek||λ
k−

λ̂
k
||2
]
< ∞. In addition, by assumption (A7) we have that

C
∑N
i=1

∑∞
k=1 τkEk‖εki ‖2 < ∞. These facts combined lead

to
∑∞
k=1 χk <∞.
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Thus, the conditions of Theorem 2 are satisfied. We con-
clude that the sequence {φ(xk,λk)} converges almost surely
to some finite random variable φ̄. By Theorem 2, we also have
that
∞∑
k=1

[(
ρ− 1

C

)
τkEk

N∑
i=1

||Ai(x
k
i − x̂ki )||2

+
τk
qρ

Ek||λk − λ̂
k
||2
]
< ∞.

The random variables ‖Ai(x
k
i −x̂ki )‖2 for all i ∈ I, and ‖λk−

λ̂
k
‖2 = ‖ρr(x̂k)‖2 are integrable, due to the aforementioned

arguments about their boundedness. Hence, we can use the law
of iterated expectation on the above relation which, combined
with assumption (A4) that states

∑∞
k=1 τk =∞, finally gives

us that r(x̂k)
L2

−→ 0 and Aix̂
k
i

L2

−→ Aix
k
i for all i =

1, . . . , N . �

We are now ready to prove the main result of this paper.
The central idea behind the following proof is to show that
there exists a subsequence over which {φ(xk,λk)} converges
almost surely to zero. Then, we use the result of lemma 4,
which states that {φ

(
xk,λk

)
} converges a.s. over all k to a

finite limit, to infer that the generated sequences of primal and
dual variables converge to their respective optimal sets almost
surely over all k.

Theorem 3: Assume (A1)-(A8). Then, the SADAL method
generates sequences of dual variables {λk(ω)} that converge
to an optimal solution of problem (3) for almost all ω ∈ Ω.
Moreover, any sequence {xk(ω)} generated by SADAL has an
accumulation point and any such point is an optimal solution
of problem (1) for almost all ω ∈ Ω.

Proof: In Lemma 4, we proved that r(x̂k)
L2

−→ 0 and

Aix̂
k
i

L2

−→ Aix
k
i for all i = 1, . . . , N . It is known

that the mean square convergence of a sequence of random
variables implies convergence in probability, which in turn
implies that there exists a subsequence such that a.s. con-
vergence holds. Hence, there exists a subsequence K1 ⊂ K
such that Aix̂

k
i

a.s.−→ Aix
k
i for k ∈ K1 holds. Similarly,

r(x̂k)
L2

−→ 0 over K1, which in turn means that there
exists a sub-subsequence K2 ⊂ K1 such that r(x̂k)

a.s.−→ 0
for k ∈ K2. Hence, we have that {r

(
x̂k(ω)

)
}k∈K2 and

{Aix̂
k
i (ω) − Aix

k
i (ω)}k∈K2 converge to zero for almost all

ω. Combining these two results, we infer that r(xk)
a.s.−→ 0

over K2, also.
Recall from (15) that the update law for the dual sequence

is λk+1 = λk + ρτk
(∑N

i=1 Aiỹ
k+1
i − b

)
, where Aiỹ

k+1
i =

Aiy
k+1
i +uk+1

i , cf. (19). Combining these two, we have that

λk+1 = λk + ρτkr(yk+1) + ρτk

N∑
i=1

uk+1
i . (50)

By definition (14), it holds that Aiy
k+1
i = Aix

k
i + 1

q

(
Aix̂

k
i −

Aix
k
i

)
. Thus, using the results that r(xk) and r(x̂k) converge

a.s. to zero over K2, we infer that r(yk)
a.s.−→ 0 over K2.

Moreover, from Chebyshev’s inequality we have that for every
δ > 0 the following holds

P
(
|ρτkuk+1

i | ≥ δ
)
≤ ρ2τ2kE‖u

k+1
i ‖2

δ2
, (51)

From assumption (A6) we have that E‖uk+1
i ‖2 ≤ M4 <

∞ for all k which, combined with assumption (A4), gives
us that

∑∞
k=1 ρ

2τ2kE‖u
k+1
i ‖2 < ∞. This implies that∑∞

k=1 P
(
|ρτkuk+1

i | ≥ δ
)
< ∞, and by the Borel-Cantelli

lemma this means that ρτkuki
a.s.−→ 0. This, combined with

the previous result that r(yk)
a.s.−→ 0 over K2 and the a.s.

convergence of {φ(xk,λk)} from Lemma 4, gives us that the
dual sequence {λk}k∈K2

(50) converges a.s. to some finite
limit µ̄, i.e., λk a.s.−→ µ̄ over K2.

From assumption (A3), all sequences {x̂ki (ω)}, i = 1, . . . N ,
are bounded. This, combined with the fact that the xk+1

i

is a convex combination between x̂ki and xki , cf. (13), and
given that the initial value x1 is bounded, means that the
sequences {xki (ω)}, i = 1, . . . N , are bounded also. This in
turn implies that the sequences {xki (ω)} have accumulation
points x̄i(ω), which are also accumulation points of {x̂ki (ω)}
due to the update step (13) of SADAL. We can choose a
subsequence K3 ⊂ K2 so that {xki (ω)}k∈K3 and {x̂ki (ω)}k∈K3

converge to x̄i(ω) for all i = 1, . . . , N . Denoting x̄(ω) =[
x̄1(ω), . . . , x̄N (ω)

]T
, we observe that the point x̄(ω) is

feasible due to the closedness of the sets Xi and the continuity
of r(·).

For any i = 1, . . . , N , consider the sequence {skfi(ω)}k∈K3 .
The subdifferential mapping x ⇒ ∂f(x) of any finite-valued
convex function defined on Rn is upper semi-continuous and
has compact images. Therefore, the sequences {skfi(ω)}k∈K3

have convergent subsequences due to a fundamental result
that goes back to [53]. We can choose K4 ⊂ K3 such that
{skfi(ω)}k∈K4 converge to some s̄fi(ω) ⊂ ∂fi

(
x̄i(ω)

)
for all

i = 1, . . . , N and almost all ω.
We recall that the optimality conditions for each subproblem

i = 1, . . . , N , cf. (29), take the form

0 = skFi
+ A>i λ̃

k

i + ρA>i

(
Aix̂

k
i +
∑
j 6=i

Ajx̃
k
j −b

)
+ zki .

Gathering all the noise terms, the above equation can be
equivalently expressed as

0 = skfi + A>i λ
k + ρA>i

(
Aix̂

k
i +

∑
j 6=i

Ajx
k
j − b

)
+ eki + wk

i + ρ
∑
j 6=i

vkij︸ ︷︷ ︸
noise terms

+ zki . (52)

From assumptions (A6)–(A8), we have that the noise terms
eki + wk

i + ρ
∑
j 6=i v

k
ij converge to 0 a.s. as k →∞. Hence,

passing to the limit over K4 in (52), we infer that each
sequence {zki (ω)}k∈K4

converges to a point z̄i(ω), for all
i = 1, . . . , N and almost all ω. The mapping xi ⇒ NXi

(xi)
has closed graph and, hence, z̄i(ω) ∈ NXi

(
x̄i(ω)

)
[40,

Lemma 2.42]. After the limit pass in (52) over k ∈ K4, we
conclude that

0 = s̄fi(ω) + A>i µ̄(ω) + z̄i(ω), ∀ i = 1 . . . , N.
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for almost all ω. These relations are exactly the optimality
conditions of each i ∈ I for the saddle point of the original
problem (1), cf. (32). This result, together with the feasibility
of x̄(ω), implies that x̄(ω) is a solution of the primal problem
(1) and µ̄(ω) is a solution of the dual problem (3).

Due to the continuity of φ(·), it follows that {φ(xk,λk)}
converges a.s. to zero over K4. Combining this with the result
that {φ(xk,λk)} converges a.s. to some finite limit for all k =
1, 2, . . . from Lemma 4, we infer that {φ(xk,λk)} converges
a.s. to zero for all k = 1, 2, . . . . This further implies that the
terms ‖Aix

k
i −Aix

∗
i ‖2 for all i ∈ I and ‖λ̄k−λ∗‖2 converge

a.s. to zero for all k = 1, 2, . . . , due to the nonnegativity of all
these terms in φ(·). Hence, we infer that Aix

k
i −Aix

∗
i
a.s.−→ 0

for all i ∈ I, and λ̄
k a.s.−→ λ∗. Combining the result that

Aix
k
i −Aix

∗
i
a.s.−→ 0 for all i ∈ I with the definition r(xk) =∑

iAix
k
i −b and the fact that the optimal solution is feasible∑

iAix
∗
i = b, we get that r(xk)

a.s.−→ 0. Hence, after recalling
that λ̄

k
= λk + ρ(1 − 1

q )r(xk) by the definition (39), we

can use the results λ̄
k a.s.−→ λ∗ and r(xk)

a.s.−→ 0 to infer that
λk converges a.s. to λ∗ for all k = 1, 2, . . . , as required. �

V. NUMERICAL EXPERIMENTS

In order to verify the validity of the proposed method, in
this section we present numerical results of SADAL applied
on a network optimization problem. Consider an undirected
graph G = (N,A) with a set of nodes N and a set of arcs
A. The set of nodes consists of two subsets N = {S,D},
where S is the set of source nodes and D is the set of
destination nodes. Let si denote the flow generated at source
node i ∈ S and ci ≥ 0 denote the reward coefficient for
si. Each si is subject to a minimum threshold constraint
si ≥ smini , where the smini is a problem parameter. Also,
let tij denote the flow through arc (i, j). Each arc (i, j) has
a feasible range of flows aij ≤ tij ≤ bij , where aij , bij
are given numbers. Denote the neighborhood of node i as
Ci = {j : (i, j) ∈ A}. The conservation of flow at each node
i ∈ S is expressed as

∑
{j∈Ci} tij −

∑
{j|i∈Cj} tji = si. The

problem we consider is a network utility maximization (NUM)
problem, where we seek to find routing decisions tij that
maximize the amount of flow generated at all source nodes,
subject to flow conservation, arc capacity, and minimum flow
generation constraints. The NUM takes the form

max
∑
i∈S

cisi

subject to
∑
{j∈Ci}

tij −
∑

{j|i∈Cj}

tji = si, ∀ i ∈ S

aij ≤ tij ≤ bij , ∀ (i, j) ∈ A,
si ≥ smini , ∀ i ∈ S.

In our consideration, the destination nodes are modeled as
sinks and can absorb any amount of incoming rates. Hence,
no flow conservation constraints are necessary for these nodes.
Note that, if some nodes are neither sources or destinations
then we set the ci and smini equal to zero. Note also that
for this problem the distributed agents are all the source
nodes i ∈ S. Moreover, the local constraint sets are Xi =
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Fig. 1. A randomly generated network for the NUM problem with 50 sources
(red dots) and 4 sinks (green squares): a) All available arcs (i, j) ∈ A are
depicted as blue lines, b) Flow routing decisions after solving the problem
with SADAL. The rate of flow tij through arc (i, j) defines the thickness
and color of the corresponding drawn line. Thicker, darker blue lines indicate
larger flows.

{si, tij ∈ R, ∀j ∈ N : si ≥ smini , aij ≤ tij ≤ bij},
for all source nodes i ∈ S, while the coupling linear
constraint set consists of the flow conservation constraints∑
{j∈Ci} tij −

∑
{j|i∈Cj} tji = si for all i ∈ S.

In what follows, we consider normalized rates si, tij ∈
[0, 1], without any loss of generality. The parameters ci and
smini are randomly generated by sampling uniformly in the
intervals [0.1, 1] and [0, 0.3], respectively. Unless otherwise
noted, the penalty parameter is set to ρ = 1. Moreover, observe
that q = maxi |Ci| and, according to the presented convergence
analysis, the stepsize τ of ADAL and the initial stepsize τ1
of SADAL must be less than 1/q. In all simulations, the
objective function value

∑
i∈S cis

k
i and the maximum residual

maxi r
k
i = maxi

(∑
{j∈Ci} t

k
ij −

∑
{j|i∈Cj} t

k
ji − ski

)
, i.e.,

the maximum constraint violation among all the flow con-
servation constraints j = 1, . . . ,m at each iteration k, were
monitored as the criteria of convergence. The examined net-
works were randomly generated with the agents uniformly
distributed in rectangle boxes. All the simulation results that
are presented in what follows correspond to the network
configuration depicted in Fig. 1(a). For reference, the typical
routing decisions obtained after solving this problem with
SADAL are depicted in Fig. 1(b).

In Fig. 2 we present simulation results for different levels
of noise corruption and compare them with the determinis-
tic solution from ADAL. The simulations We consider two
cases with different variances of the noise terms, labeled
“easy” and “hard”; in the hard case all the noise terms
have larger variance, compared to the easy case. In both
cases the noise terms are modeled as uniform random vari-
ables. For the “easy” case, the noise corruption terms are
modeled as follows: vkij ∼ 1

µkU(−0.1, 0.1), and wk
i ∼

1
µkU(−0.1, 0.1), where U(u, v) denotes the uniform distri-
bution with support [u, v]. Here, µk is a coefficient that we
introduce to make the noise terms decreasing; we initially
set µ1 = 1 and then every 5 iterations we increase µ by
one, i.e., {µ}∞k=1 = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, . . . }. The non-
decreasing noise terms are generated as uki ∼ U(−0.03, 0.03),
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Fig. 2. Comparative simulation results for different noise levels. We
consider the noise-free case (deterministic) where ADAL is applied, and two
noise scenarios, labeled “easy” and “hard” (larger noise), where SADAL is
applied. a) Objective function convergence, b) Maximum constraint violation
convergence.

and the noise in the linear objective functions is modeled
as c̃ki = cip

k
i , where pki ∼ 1

µkU(−0.3, 0.3). For the
“hard” case the random variables are generated according
to vkij ∼ 1

µkU(−0.2, 0.2), wk
i ∼ 1

µkU(−0.2, 0.2), uki ∼
U(−0.05, 0.05), and pki ∼ 1

µkU(−0.7, 0.7). In both cases,
the stepsize sequence τk is defined as τk = 1/(qνk). The
sequence νk is generated similar to µk, with the difference
that we increase it by one every 30 iterations.

Not surprisingly, the results of Fig. 2 indicate that the
stochastic problem converges slower than the noise-free case.
On the other hand, the difference in the noise levels does
not appear to affect the convergence speed significantly, at
least for the two different noise scenarios studied here. We
can also see that the residual (feasibility) convergence of
SADAL slows down significanlty after reaching accuracy
levels of about 10−3. To put these results into perspective,
note that, at iteration k = 1000, the noise term vkij in the
message exchange from agent i to j is distributed according
to vkij ∼ 10−3U(−0.5, 0.5). Now, consider that this is the
noise just from one neighbor, however, each agent i has
multiple neighbors, which means that the noise corruptions
add up; the generated networks typically have a neighborhood
size of about 5 or 6 for each node. Thus, there exists a
(relatively) substantial amount of noise corruption even at

iteration 1000 (recall also that the uki noise terms do not
decrease), which should be taken into consideration when
evaluating the convergence results of Fig. 2.

In order to test how the choice of stepsize sequences {τk}
affects the convergence, we have performed simulations where
the νk is increased every 15, 60, or 100 iterations. In all
cases we do not let the stepsize τk decrease below 0.01, i.e.,
τk = max{1/(qνk), 0.01}. For completeness, we also test
SADAL for a constant stepsize τ = 1

q , although this is not
consistent with the assumptions of the algorithm. The results,
corresponding to the “hard” formulation, are depicted in Fig. 3.
We observe that the convergence of SADAL is not significantly
affected by the choice of stepsize sequences, albeit stepsizes
that decrease faster seem to exhibit a slightly better behavior
(keep in mind that we do not let the stepsize decrease below
0.01). Moreover, the constant stepsize choice produces an
oscillatory behavior and does not lead to convergence, which
is in accordance with the theoretical analysis.

Finally, we examine how sensitive SADAL is to the choice
of the user-defined penalty coefficient ρ, at least for the
problem under consideration here. Fig. 4 depicts simulation
results of the “hard” noise scenario for ρ taking the values
0.3, 1, 3, and 10. The µk is increased every 5 iterations,
and νk every 30 iterations. We observe that convergence is
not significantly affected by the choice of ρ, apart from the
smallest value case ρ = 0.3 which lead to a more “oscillatory”
behavior.

VI. CONCLUSIONS

In this paper we have investigated distributed solutions for
a certain class of convex constrained optimization problems
that are subject to noise and uncertainty. In particular, we
have considered the problem of minimizing the sum of local
objective functions whose arguments are local variables that
are constrained to lie in closed, convex sets. The local variables
are also globally coupled via a set of affine constraints. We
have proposed an iterative distributed algorithm that is able
to withstand the presence of multiple noise terms that affect
both the computations and the communications. To the best
of our knowledge, this is the first attempt to consider this
class of problems in the context of distributed stochastic
approximation techniques. Moreover, the proposed method
is based on the augmented Lagrangian framework, which is
well-known to be a very efficient approach for optimization
in deterministic settings. Compared to existing distributed
stochastic AL approaches, our method studies a more general
framework, by allowing N > 2 and considering multiple
noise terms that appear in all computations and all message
exchanges at the same time. We have established conditions
under which our method is guaranteed to converge a.s. to the
optimal sets in both the primal and dual domains.
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DQA algorithm to convex stochastic programs,” SIAM J. Optim., vol. 4,
no. 4, pp. 735–753, 1994.

[45] J. Eckstein and D. P. Bertsekas, “An alternating direction method for
linear programming.” LIDS, MIT, 1990.

[46] D. Bertsekas, “Stochastic optimization problems with nondifferentiable
cost functionals,” Journal of Optimization Theory and Applications,
vol. 12, no. 2, pp. 218–231, 1973.

[47] I.-J. Wang and J. Spall, “A constrained simultaneous perturbation
stochastic approximation algorithm based on penalty functions,” in
American Control Conference, 1999. Proceedings of the 1999, vol. 1,
1999, pp. 393–399 vol.1.

[48] ——, “Stochastic optimization with inequality constraints using simul-
taneous perturbations and penalty functions,” in Decision and Control,
2003. Proceedings. 42nd IEEE Conference on, vol. 4, Dec 2003, pp.
3808–3813 vol.4.

[49] S. S. Singh, N. Kantas, B.-N. Vo, A. Doucet, and R. J. Evans,
“Simulation-based optimal sensor scheduling with application to ob-
server trajectory planning,” Automatica, vol. 43, pp. 817 – 830, 2007.

[50] T. Salimans and D. A. Knowles, “On using control variates with
stochastic approximation for variational bayes and its connection to
stochastic linear regression,” arXiv:1401.1022v3.

[51] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Advances in Neural Information
Processing Systems, 2013, pp. 315–323.

[52] H. Robbins and D. Siegmund, “A convergence theorem for non negative
almost supermartingales and some applications,” in Proceedings of the
Symposium on Optimizing methods in Statistics, Columbus, OH, 1971,
pp. 233–257.

[53] C. Berge, Espaces Topologiques Functions Multivoques Dunod. Paris,
1959.

Nikolaos Chatzipanagiotis received the Diploma in
Mechanical Engineering, and the M.Sc. degree in
Microsystems and Nanodevices from the National
Technical University of Athens, Athens, Greece, in
2006 and 2008, respectively. He also received a
Ph.D. degree in Mechanical Engineering from Duke
University, Durham, NC, in 2015.

His research interests include optimization theory
and algorithms with applications on networked con-
trol systems, wired and wireless communications,
and multi-agent mobile robotic networks.

Michael M. Zavlanos received the Diploma in
mechanical engineering from the National Technical
University of Athens (NTUA), Athens, Greece, in
2002, and the M.S.E. and Ph.D. degrees in electrical
and systems engineering from the University of
Pennsylvania, Philadelphia, PA, in 2005 and 2008,
respectively.

From 2008 to 2009 he was a post-doctoral re-
searcher in the department of electrical and sys-
tems engineering at the University of Pennsylvania,
Philadelphia. He then joined the Stevens Institute of

Technology, Hoboken, NJ, as an assistant professor of mechanical engineering,
where he remained until 2012. Currently, he is an assistant professor of
mechanical engineering and materials science at Duke University, Durham,
NC. He also holds a secondary appointment in the department of electrical
and computer engineering. His research interests include a wide range of
topics in the emerging discipline of networked systems, with applications in
robotic, sensor, communication, and biomolecular networks. He is particularly
interested in hybrid solution techniques, on the interface of control theory,
distributed optimization, estimation, and networking.

Dr. Zavlanos is a recipient of the 2014 Office of Naval Research Young
Investigator Program (YIP) Award and the 2011 National Science Foundation
Faculty Early Career Development (CAREER) Award. He was also a finalist
for the best student paper award at CDC 2006.


