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Bearing-Only Active Sensing Under Merged
Measurements

Luke Calkins1,2, Phil Baldoni1, James McMahon1, Corbin Wilhelmi1, and Michael M. Zavlanos2

Abstract—In this paper we propose an algorithm to actively
track multiple moving targets using a bearing-only sensor in the
presence of merged measurements. Merged measurements arise
from sensor resolution constraints and therefore targets that are
close in relative bearing to the sensor get reported as a single
group measurement. We employ a merged measurement model in
a nonlinear joint probabilistic data association filter for tracking
multiple targets through merging events. We also propose an
online adaptive planning algorithm that maneuvers the sensor in
order to increase tracking performance. We introduce a novel
method based on forward value iteration that incorporates the
merged measurement information into the planning strategy.
The resulting trajectory is biased away from situations where
merged measurements occur, as this leads to more uncertainty
in the target state estimates. We demonstrate our algorithm
both in simulation as well as onboard real unmanned ground
vehicles. This is the first time bearing-only tracking with merged
measurements has been accomplished with a mobile sensor in
practice. Furthermore, to the best of our knowledge, this is the
first time merged measurement data association information has
been utilized to effectively plan for such situations.

Index Terms—Reactive and Sensor-Based Planning, Visual
Tracking

I. INTRODUCTION

IN order to remain discrete and avoid detection, it is advan-
tageous to employ passively collected data for detection

and tracking. For example, systems have used camera footage
to track pedestrians [1], [2] and acoustics to detect and
track underwater phenomena [3], [4]. In contrast to active
tracking, where the sensing system emits some signal into
the environment (i.e. LIDAR, RADAR, SONAR), a passive
tracking system only collects information generated by the
target itself. Multiple challenges arise in the passive tracking
problem: (i) overcoming environmental noise, (ii) bearing only
measurements (a lack of relative range information), (iii) and
the merging of measurements from multiple targets. Merged
measurements arise in scenarios where one target occludes
others, or when targets are closely spaced relative to the
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Fig. 1: Test area for the UGV experiments in the Naval Research Laboratory’s
”Laboratory for Autonomous Systems Research” (LASR) High Bay.
sensor resolution. When targets are merged, the sensor reports
the group as a single detected target as opposed to multiple
distinct detections. In the case where measurements merge, a
single measurement must be associated with multiple targets to
correctly interpret the passive data. When data is not associated
correctly this often leads to degraded tracker performance in
the form of track coalescence (where two or more tracks merge
onto a single target) and the premature deletion of tracks [5]–
[7].

In this work, we focus on the difficulties associated with
merged measurements for a passive, bearing-only sensor. In
this particular scenario, bearing-only measurements are col-
lected on-board a mobile ground vehicle using two monocular
cameras, one facing port and the other starboard. Using the
real time RGB-D camera feed, data is passed through an
off the shelf, pre-trained neural network [8] to detect targets
(other ground vehicles) and their relative bearing. A sensor
resolution model modeling the probability that two targets will
merge is incorporated into a joint probabilistic data association
filter (JPDAF) [9] which performs the data association and
tracking. We also introduce a novel planning algorithm that
maneuvers the sensing agent in order to increase the tracking
performance.

A. Related Work

Autonomous tracking using bearing-only sensors has re-
ceived the most attention in underwater environments onboard
autonomous underwater vehicles (AUVs). In our previous
work [4], we provide field results for a passive sonar multi-
target tracker based on a particle filter and a simple keep
broadside behavior. Other works using sonar optimize an
information-metric over some horizon [10], [11].

When tracking multiple targets simultaneously in the pres-
ence of clutter, the process consists of two steps. First,
measurements are associated to targets, and then single target
filtering is applied. Two broad categories encompass this
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approach, namely the JPDAF [9] and multiple hypothesis
tracking (MHT) [12]. Within the last decade, the probability
hypothesis density (PHD) filter [13] has gained a lot of traction
as it does not perform data association. However, it does
not produce labeled tracks over time but rather an unlabeled
distribution of target states at every time step. A review of the
state-of-the-art for multi-target tracking is given in [14].

The importance of considering sensor resolution limitations
in tracking algorithms is described in [15], however they point
out that 99% of the tracking literature does not consider it.
The first method for incorporating merged measurements to
an arbitrary number of targets in a JPDAF context was given
in [5]. Methods also exist to incorporate merged measurements
into MHT [6] and PHD filters [7].

In the robotics and controls community, researchers have
been developing efficient methods to compute control policies
to aid in active information acquisition and tracking [16], [17].
Forward value iteration [18] provides a way to optimize a
sensor’s trajectory by considering the dynamics of the sensor
itself by solving an optimal control problem. The reduced
value iteration method [19] provides a more computationally
efficient approach to FVI with a sacrifice in optimality. The
method proposed in this paper is based off the FVI algorithm,
but considers the effect of merged measurements in the plan-
ning process. Most similar to the desired objective in this work
is the work on data association aware planning in SLAM [20],
and active target tracking using a team of robots utilizing a
PHD filter [21]. None of the described works in the active
sensing literature consider the effects of merged measurements
into the tracking or planning problems.

B. Contributions

To the best of our knowledge, this is the first exploration
of a merged measurement JPDAF in a bearing-only tracking
scenario with an autonomous mobile sensor. We also incorpo-
rate the merged measurement information and data association
into our planning strategy, which has not been explored before.
This has the benefit of driving the sensor to configurations
where merging will not occur when possible, resulting in
better tracking performance. A further contribution of this
work is the demonstration of the proposed algorithm in a
real practical tracking application with autonomous ground
vehicles equipped with cameras. Transitioning to experiments
presents many challenges including noisy sensors, accurate
state estimation, and the asynchronous running of different
algorithms. We utilize a pre-trained neural network for our
target detection thus resulting in many missed detections and
false alarms. We are able to demonstrate robustness of our
algorithm to these challenges.

The rest of the paper is organized as follows. In Section II,
the governing motion and measurement models are defined.
The tracking algorithm is presented in Section III and the
planning strategy in Section IV. Experimental and numerical
results are presented in Section V before concluding remarks
are given in Section VI.

Fig. 2: Sensor field of view. Blind spots directly ahead and behind the vehicle.

II. PRELIMINARIES

Here we present the governing equations utilized in the
development of our proposed algorithm.

A. Constant Velocity Motion Model

We represent the state of the target by xk , [xk yk ẋk ẏk]T ,
where (xk, yk) is the target’s position and (ẋk, ẏk) its velocity.
We assume targets of interest are moving with approximately
constant velocity according to the following second-order
kinematic model with acceleration disturbances

xk = fk(xk−1,wk)

=


1 0 Tk 0
0 1 0 Tk
0 0 1 0
0 0 0 1


︸ ︷︷ ︸
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, (1)

where Fk is the state transition matrix, and Tk , tk− tk−1 is
the sampling interval. The zero-mean Gaussian process noise
vector, wk ∼ N (0,Qk) has covariance matrix Qk given by
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where σ2
a is the variance of the zero-mean acceleration distur-

bance assumed equal in both coordinate directions.

B. Passive Bearing-Only Sensor Model

The observing vehicle, also referred to as the ownship, has
state pk = [x0

k, y
0
k, ψk] where (x0

k, y
0
k) is its position and ψk

is its heading measured counterclockwise from the positive
x axis. We employ a limited field-of-view (FOV) bearing
only camera sensor. The bearing of the target relative to the
ownship’s position is

βk(xk,pk) = atan(∆yk/∆xk) (3)

where ∆xk(xk,pk) = xk − x0
k and ∆yk(xk,pk) = yk − y0

k

are relative distances. The bearing measured in the reference
frame of the sensor is αk = βk − ψk. Thus, αk is measured
counterclockwise from the ownship’s heading. The measure-
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ment reported by the sensor is

zk = hk(xk, vk; pk)

=

{
αk(xk,pk) + vk αk ∈ FOV
∅ otherwise

(4)

where vk ∼ N (0, σ2
b ) is zero-mean Gaussian noise with

variance σ2
b and ∅ is the empty set. The effective FOV ϕ

is centered around the 90 and 270 degree α angles on both
the port and starboard sides respectively. See Figure 2 for
reference. Therefore, the sensor reports a bearing measurement
if the relative bearing is within its field of view, otherwise,
no measurement is reported. In terms of Bayesian filtering,
(4) is referred to as the likelihood function, L(zk|xk). The
likelihood function gives the relative probably of observing a
bearing measurement for all target states x ∈ R4. However,
it is not necessarily a probability distribution and it need
not integrate to unity across the target state space. Bearing
measurements resulting from targets outside the field of view
have zero likelihood.

With the motion model (1) and likelihood function (4),
the standard extended Kalman Filter (EKF) [22] can be
applied to recursively track the time varying target state xk.
Note that when tracking a target, if the estimated position
is outside the sensor’s FOV, only the prediction step in the
EKF will be performed and not a measurement update. An
EKF is needed due to the nonlinear measurement model (4).
Therefore, linearization of (4) around the predicted target state
xk|k−1 is needed at each time step to perform the measurement
update. This process works well for single target tracking in
the absence of clutter or merged measurements.

III. MERGED MEASUREMENT MODELING AND TRACKING

In this paper, we seek to track multiple targets in the
presence of merged measurements and random clutter. When
tracking multiple targets, there is a measurement origin un-
certainty problem, as the sensor does not know which mea-
surement came from which target. We employ a merged-
measurement variant of the joint probabilistic data association
filter (JPDAF). The JPDAF is a ”soft association” technique
where every measurement within the validation gate of each
target it assigned to the target with an appropriate probability
[9].

A. JPDAF with Merged Measurements

We follow the methodology in [5] for modeling the merging
of measurements and subsequent incorporation into the esti-
mator. We summarize this method here as it will be utilized
in the development of the planning strategy in Section IV. We
assume that the number of targets is arbitrary but known. A
group is defined as a set of targets that gives rise to a single,
joint measurement due to the resolution characteristics of the
sensor. The merging events are modeled as graphs, where
nodes represent targets and an edge between nodes represents
the event that two targets are pairwise unresolved. Therefore, a
group of targets is considered unresolved if there exists a path
in the graph connecting the targets. A three target graph is

1

2

3

Fig. 3: Representation of merging events. Target one is resolved while targets
two and three are unresolved, producing a merged measurement

shown in Figure 3 in which two targets are unresolved and thus
produce a group measurement, and one target is resolved. A
probabilistic representation of the event that targets are merged
is needed, conditioned on the target states and the ownship
state. This probability depends on the sensor characteristics
as well as the type of processing used, but is given here as a
simple intuitive model that is mathematically tractable. Given
a merging graph V , the probability of the merging graph given
the target state, xk, where xk = [x

(1)
k ,x

(2)
k , . . . ,x

(N)
k ] is the

combined state for N total targets is

p(V|xk) =
∏
Se

Pu(Se))
∏
S0

(1− Pu(S0)), (5)

where Se is the set of unresolved pairs in the graph V and S0

is the set of pairwise targets that are resolved, and therefore
do not have an edge connecting them. Pu is the probability
that two targets are pairwise unresolved and is dependent on
the joint state xk. Consider the set S of all pairwise targets,
such that S = Se ∪S0. For a certain pair of targets x

(i)
k ,x

(j)
k ,

the probability that they are unresolved is given by

Pu(x
(i)
k ,x

(j)
k ) = e−

1
2 (∆i,j

β /αβ)2 (6)

where ∆i,j
β is the difference in bearing between targets i and

j, and αβ describes the resolution capabilities of the sensor.
In (6), two targets that are at the same relative bearing will
merge with probability one, with decreasing probability as the
difference in bearing grows, with decay rate controlled by
parameter αβ . The merging probability can also be written
as a scaled multi-variate Gaussian as

Pu(x
(i)
k ,x

(j)
k ) = |2πRu|1/2N (0; ∆i,j

β ,Ru), (7)

where Ru = α2
β . Rewriting (6) as a normal distribution

simplifies the calculation of the posterior density described
in Section III-C.

B. Group Measurement Model

The set of measurements at time step k, denoted Zk is
described by

Zk = Πp

[
Zck
Ztk

]
(8)

consisting of a set of clutter generated measurements Zck and
target generated measurements Ztk. The matrix Πp is a Mk-
dimensional random permutation matrix that describes the
data association uncertainty as the sensor cannot discriminate
between clutter and target generated measurements and the
order in which they appear in Zk is random.

We seek a likelihood function p(Zk|V,d,xk), describing
the measurements conditioned on a merging event V , data
association vector d, and joint target states x. The data associa-
tion vector d of length Mk has entries d(j) = i if measurement
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j is assigned to target i, or d(j) = 0 if measurement j is
assigned to clutter. The group measurement model used in this
paper, like [5], assumes that a group measurement comes from
the group center, i.e., the average bearing of the target group.
However, we do not assume a linear measurement model in
this work as in [5], but rather develop an extended Kalman
filter (EKF)-like approach based on the linearization of the
nonlinear bearing-only measurement model. For a group of
ng targets (possibly of size one), whose states are stacked in
the group state xgk, their group measurement, zt,(j)k is given
by

z
t,(j)
k = h

ng
k (xgk) + u

g,ng
k

=
1

ng
(hk(xg,1k ) + · · ·+ hk(x

g,ng
k )) + u

g,ng
k (9)

where u
g,ng
k ∼ N (0,R

ng
k ) is the group measurement noise

which depends on the number of targets in the group. As
assumed in most merged measurement tracking literature, the
group measurement noise is greater for larger target groups.

For the clutter measurements, Zck, it is common to assume
that these measurements are independent and distributed uni-
formly throughout the sensor’s field of view (FOV) with the
number of measurements having a Poisson distribution with
rate parameter λ. If the data association d is known, then the
clutter measurements at time k have the probability density
function

p(Zck|d,V) =
1

|FOV|Mk,c
(10)

and the target measurements, in which measurements from
different groups are assumed independent, have the probability
density function

p(Ztk|V,d,xk) =

Mk,t∏
i=1

p(z
t,(i)
k |d,V,xk) (11)

where p(ztk|d,V,x) is the group measurement model (9). The
total number of measurements at time step k is given by
Mk = Mk,t + Mk,c, where Mk,t and Mk,c are the number
of target measurements and clutter measurements respectively.
In reality, since data association is unknown, the measurement
update for each feasible association is performed resulting in
a Gaussian mixture with appropriate association weight.

C. Posterior Density
Now, the posterior density can be calculated when the

resolution events and data association are unknown. The
unknown merging events are considered by marginalizing over
all possible merging graphs V .

p(xk|Zk) =
∑
V
P (xk,V|Zk) (12)

Since the data association d is also unknown, a marginalization
over all possible data associations is also performed resulting
in the full posterior density

p(xk|Zk) ∝
∑
V
p(V|xk)

∑
d∈D(V)

p(d|V,xk)

× p(Zk|V,d,xk)p(xk|xk−1). (13)

In (13), p(xk|xk−1) is the predicted target density, equiv-
alent to the prediction step for an EKF [22]. The density
p(Zk|V,d,xk) = p(Ztk|V,d,xk) × p(Zck|d,V). In order to
calculate (13), an expression for the data association probabil-
ity p(d|V,xk) is needed (alg. 1:6). This is given as [5]

p(d|V,xk) = Pc(Mk,c)
(Mk −Mt)!

Mk!

×
∏

j:dj=0

(1− P jD)
∏

j:dj=1

P jD, (14)

where P jD is the probability of detection for measurement
index j, {j : d(j) = 0} is the set of clutter detections,
and {j : d(j) > 0} is the set of target generated detections.
Pc(Mk,c) is the probability of receiving Mk,c clutter measure-
ments which is given by the Poisson pmf with parameter λ.
Intuitively, for a given merging graph V , the target updates are
calculated using an EKF for each data association hypothesis,
resulting in a Gaussian posterior belief. This result is weighted
by p(d|xk,V),×p(Ztk|xk,V,d) × p(Zck|d,V) (alg. 1:7). The
result is a Gaussian mixture with more likely data associations
carrying more weight. The JPDAF approach is to approximate
this Gaussian mixture with a single Gaussian using first and
second order moment matching which therefore outputs a
single Gaussian belief for each target (alg. 1:11).

With merged measurements, the final step is the marginal-
ization over all possible merging graphs V . This involves
multiplying the Gaussian mixture over all data associations
d ∈ D(V) by the probability of the graph p(V|xk) (alg. 1:8).
By defining π(i,j)(k) = δk,i − δk,j k = 1, . . . , ng , the
probability of the merging graph p(V|xk) can be redefined
to be in terms of the measurement model (4) as opposed to
∆i,j
β . Since ∆i,j

β = π(i,j)[h(x(i)), h(x(j))]T , we can write the
multiplication of Pu(x

(i)
k ,x

(j)
k ) with a measurement-updated

Gaussian mixture component N (xk; x̂k|k,Σk|k) as an EKF-
like measurement update

Pu(x
(i)
k ,x

(j)
k )N (xk; x̂k,Σk) = |2πRu,Nres |1/2×

N (0;π(i,j)[h(x(i)), h(x(j))]T ,Ru,Nres)N (xk; x̂k,Σk|k).
(15)

This multiplication can be rewritten as

N (0;π(i,j)[h(x(i)), h(x(j))]T ,Ru,Nres)N (xk; x̂k,Σk|k) =

N (0;π(i,j)[h(x(i)), h(x(j))]T ,Si,j)N (xk; x̂i,jk ,Σ
i,j
k|k), (16)

where Si,j , x̂i,jk|k, and Σi,j
k|k come from the standard EKF

equations. This multiplication is the equivalent of an EKF
measurement update. The resolution update can be interpreted
as a fictitious measurement of zero of the separation of the
target bearings. Since p(V|xk) is the product of Pu terms, each
multiplication with a Pu term is a measurement-like update
as given above in (16). There are also (1− Pu) terms in (5),
and therefore a measurement updated density is split into two
components for each (1 − Pu) term defined by the graph V .
The set of components generated by a resolution update for
a graph V and data association hypothesis d are collected in
the set U(V). The merged measurement JPDAF algorithm is
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Algorithm 1 Merged Measurement JDPAF Tracking

Require: x̂k = [x̂
(1)
k , . . . , x̂

(N)
k ],Σk = diag{Σ(1)

k , . . . ,Σ
(N)
k }

Require: Zk = {z(1)
k , . . . , z

(Mk)
k }

1: Perform prediction step x̂k|k−1 = Fx̂k−1|k−1, Σk|k−1 =
FΣk−1|k−1F

T + Q
2: Generate all feasible graphs V
3: for each graph do
4: formulate all data association hypotheses D(V)
5: for each data association hypotheses d ∈ D(V) do
6: Calculate prior probability Pr{d|V,xk}
7: Perform measurement update, which yields a scaled

Gaussian cV,dN (xk; x̂V,dk|k ,Σ
V,d
k|k )

8: Update with resolution model. The
result is a sum of scaled Gaussians∑
u∈U(V) c

V,u,dN (xk; x̂V,u,dk|k ,ΣV,u,dk|k )
9: end for

10: end for
11: Approximate Gaussian mixture with single Gaussian using

moment matching
x̂k|k =

∑
V
∑
u∈U(V)

∑
d∈D(V) c

V,u,dx̂V,u,dk|k
Σk|k =

∑
V
∑
u∈U(V)

∑
d∈D(V) c

V,u,d{ΣV,u,dk|k +

(x̂V,u,dk|k − x̂k|k)(x̂V,u,dk|k − x̂k|k)T }

summarized in Algorithm 1. A complexity analysis for this
type of tracking algorithm is out of the scope of this paper,
refer to [23] for details.

IV. DATA ASSOCIATION AWARE PLANNING

Here we introduce a planning approach in order to maneuver
the ownship vehicle while simultaneously tracking the targets
in order to achieve optimal tracking performance. Our method
is similar to the approach presented in [19] using forward
value iteration (FVI). FVI progressively grows a search tree
where nodes represent reachable states (pt, x̂t,Σt) from the
current initial state (p0, x̂0,Σ0). For each node pt is the
ownship state, x̂t is the stacked target state estimates, and
Σt = diag{Σt,1, . . . ,Σt,N} is the covariance of all N targets.

Assume the ownship vehicle is governed by the following
dynamical equation

pt+1 = f(pt, ut) (17)

where ut ∈ U is the control from a set of finite controls
U . It as assumed that the state of the ownship vehicle is
known. Given an initial pose and target distribution, we seek
an optimal control sequence u1, . . . , uT over horizon T that
minimizes the mutual information of the final target state xT
and the measurement set z1:T . This is a stochastic optimal
control problem for which closed-loop policies are preferable.
However, under the assumption of linear dynamics and a
linear measurement model with respect to the target state, this
becomes a deterministic optimal control problem [18]

min
u∈UT

log det(ΣT ) (18)

s.t. pt+1 = f(pt, u), t = 0, . . . , T − 1

Σt+1 = ρpt+1
(Σt) t = 0, . . . , T − 1,

where ρpt+1
(·) is the Kalman filter Riccati map. The con-

trol problem (18) is solved using FVI by propagating the
covariance matrix from each node to all children nodes by
enumerating through each action in U . By expanding the initial
node using all possible actions in U , the set of nodes S1

reachable at time t = 1 are calculated. From any node in the
tree, there exists one edge for every action in U connecting
to one time step ahead in the tree. If the motion model and
measurement models are linear, then the covariance updates
do not depend on the actual target trajectory. However, since
we have a nonlinear measurement model (4), linearization is
needed and model predictive control can be applied creating
an adaptive policy.

In this paper, we propose an alternative method for up-
dating the covariance matrices in (18) that incorporates the
information from the merged measurement model. Since the
measurement noise is assumed larger for larger target groups,
updates from merged measurements will result in larger target
covariances, thus creating a larger cost in (18). By performing
a covariance update similar to that of the merged measurement
JPDAF tracker described in Section III, the planning algorithm
will drive the vehicle to configurations where targets will not
merge in the measurement space, thus leading to better track-
ing performance. Some merging events may be unavoidable
given the sensor’s dynamics and the target trajectories, but in
these cases, the merged measurement JDPAF tracker will be
able to hold tracks on the targets through the merging event.

Due to the high computational cost of the merged measure-
ment JPDAF, it is infeasible to compute the full covariance
update step of the FVI given there are (NT−1)/(N − 1) total
nodes in the search tree where N is the number of actions
at each node and T is the planning horizon. Therefore, we
seek an algorithm that is computationally similar to the FVI
algorithm, while also equipping the algorithm with the merged
measurement model information. We do so in the following
way. When expanding a node, the estimated bearing of each
target is calculated. The pair-wise merging probability (5) is
evaluated for every feasible pair of targets. If the merging
probability Pu > η for some η ∈ [0, 1], then the pair is
assumed merged at that node. In simulation and experiment,
we use η = 0.5 resulting in the most likely merging graph
V (alg. 2:8). After all pairwise evaluations of (5) have been
calculated, targets are separated into groups according to V
and measurements are simulated for each group (alg. 2:9).
With this information, the correct data association is known
and the covariance updates can be performed for each target
(alg. 2:10). The full FVI with merged measurement algorithm
is described in Algorithm 2. As described in [18], the most
computationally demanding step of the FVI algorithm is the
covariance filtering update (alg. 2:10). By only considering a
single merging and association event in the planner, we are still
only performing a single covariance update for each target as
opposed to the many required by a full merged measurement
JPDAF update.

We then control the vehicle using a receeding horizon
control approach described in Figure 4. Starting from the
initial ownship state and target belief we invoke the merged
measurement FVI planner to generate the next control action
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Algorithm 2 Forward Value Iteration with Merged Measure-
ment Model
Require: p0, x̂0 = [x̂

(1)
0 , . . . , x̂

(N)
0 ],Σ0 =

diag{Σ(1)
0 , . . . ,Σ

(N)
0 }

1: S0 ← {(p0, x̂0,Σ0)}, St ← ∅ for t = 1, . . . , T
2: Predict target trajectory of length T : x̂0, x̂1, . . . , x̂T
3: Linearize the observation model: Hτ (·) ←
H(·,xt+τ ), τ = 0, . . . , T

4: for t = 1 : T do
5: for all (p, x̂,Σ) ∈ St−1 do
6: for all u ∈ U do
7: pt ← f(p, u)

8: Evaluate Pu(x
(i)
t ,x

(j)
t ) for each target pair (i, j) ∈

N and merge targets if Pu > η. This defines a
merging graph V

9: Generate predicted measurements ẑ1, . . . , ẑM ac-
cording to V

10: Update Σt(Σt−1,d(V), ẑ1, . . . , ẑM ) for each tar-
get using the correct data association from the
previous line

11: St ← St ∪ {(pt, x̂t,Σt)}
12: end for
13: end for
14: end for
15: return min {log det(Σ)|(p, x̂,Σ) ∈ ST }

sequence ut. After the vehicle is moved, the sensors collect
data which is then passed to the merged measurement JPDAF.
The resulting state estimates are then passed back to the FVI
algorithm and the process is repeated while the overall time
budget T is not satisfied.

V. RESULTS

In this section we present simulation results of our tracking
and planning algorithms as well as experiments with real
ground vehicles equipped with cameras. In both simulation
and experiment, the vehicle is controlled with a set of motion
primitives {(v, ω)|v = vtran, ω ∈ {0,±vtran/Rturn} rad/s}
where vtran is the constant translation speed and ω is the turning
rate given turning radius Rturn. Therefore, at every planning
step, the vehicle has the option to go straight, turn left, or
turn right. A differential drive motion model is used for (17)
when predicting the trajectory during planning. This same
model is used to move the robot in simulation whereas the
appropriate motor commands were applied in experiment to
get the desired speed and turn rate. It should be noted that any
motion model can be used in (17) as long as it is known ahead
of time. Simulations were performed in Python. A NVIDIA
Jetson AGX Xavier development kit was utilized onboard the
ground vehicles. The robotics operation system (ROS) [24]
was utilized to interface the Stereo Labs ZED camera sensors,
motor controller, and tracking and planning algorithms.The
nodes in ROS were programmed in Python and C++.

Fig. 4: High level flowchart for the overall control system. mmFVI corre-
sponds to Algorithm 2, mmJPDAF corresponds to Algorithm 1.

A. Simulation Results

Here, we present the results of running the nonlinear EKF
bearing-only merged measurement tracking algorithm coupled
with our planning algorithm described in Section IV. We ran
Monte-Carlo simulations of a scenario involving four targets.
As a means for comparison, we compare our results to the
approach found in standard FVI or its variants [18], [19],
[25]. In these approaches, EKF updates are performed when
predicting target beliefs in the planning process as governed
by (18). Common in these approaches is the assumption that
the data association is known. Therefore in order to compare
to our method, a data association strategy is needed to perform
the tracking. We implemented a simple nearest neighbors
algorithm that selects the closest measurement to the predicted
target measurement and performs the standard measurement
update with the nearest measurement.

The results of 100 Monte-Carlo simulations of the scenario
is shown in Figure 5. The average root mean squared error
(RMSE) of the targets with our merged measurement tracker
coupled with our merged measurement planner is compared
with a nearest neighbors EKF tracker using FVI planning.
Representative trajectories of the two planning methods are
also shown for a single run in 5a. It can be seen that our algo-
rithm drives the sensor behind the targets initially so that they
are well separated in bearing. By comparison, the standard
FVI algorithm drives the sensor to the left side of the map
initially, which given the target trajectories, causes them to
overlap in bearing and therefore creates merged measurements.
The nearest neighbor algorithm cannot handle these merging
events well and tracks tend to diverge or coalesce leading to
the large errors shown in Figure 5b.

B. Experimental Results

In this subsection, we present experimental results showcas-
ing our method in use on a real ground vehicle as it tracks other
identical ground vehicles while optimizing its trajectory on-
line. We utilized Aion Robotics M6 UGV’s equipped with two
cameras facing back to back. A Vicon motion capture system
was utilized to measure ground truth position and heading of
the ownship and target vehicles. A pre-trained YOLOv4 object
detection neural network [26] was utilized to generate bearing
contacts for each frame of the image stream1. To ensure
real time performance we used the tkDNN library [27] and
the YOLOv4 tiny model with the default configuration. For
each frame, every detected object is converted into a bearing
measurement relative to the sensor by using the bounding
boxes and RGB-D information provided by the cameras. Note

1The NN model used in these experiments can be found at
https://github.com/AlexeyAB/darknet#pre-trained-models
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(a) Trajectories of two planning strategies. Circles represent starting positions

(b) Average RMS error for all 4 targets with standard FVI comparison

Fig. 5: Four target simulation results.

that with this approach we naturally experienced dropped
contacts, noisy contacts from objects other than our targets,
and merged contacts due to obstructions. Post processing was
done to ensure occurrences of these behaviors were within
realistic limits. Specifically, to increase the rate of merged
measurements, thresholds were set on the amount of detection
overlap and bearing separation of objects. A single merged
contact would be returned if two objects shared more than 50
% overlap of bounding boxes or had less than ten degrees of
separation. The merged contact is taken as a measurement of
the group center as given by the merged measurement model
(9).

We ran two scenarios, each tracking two other ground
vehicles. In the first scenario one target is stationary while the
other target moves straight at constant speed (see fig. 6.a). In
the second scenario both targets are mobile, moving forward at
constants speeds (see fig. 6.b). The second scenario is designed
such that the two tracks cross each other. We also compared
our method with that of a nearest neighbor EKF tracker with
FVI planning. In ten trial runs of scenario 1, our method
successfully held tracks on the correct vehicles nine times. By
contrast, the nearest neighbor filter with FVI planning was only
successful one out of ten times. In ten trial runs of scenario
2, our method successfully held tracks on the vehicles ten out
of ten times (however in four scenarios the tracks switched
vehicles). By contrast, the nearest neighbor method never
successfully maintained tracks on both vehicles. See video
attachment for demonstration of experiment scenarios. The
RMSE is plotted for representative trials in Figure 6 utilizing
both our method and nearest neighbors with EKF filtering for
comparison. Figures (see fig. 6.a and 6.b bottom) shows two
representative trajectories from scenario 1 and 2 respectively.
In the both examples, the merging of the measurements causes
the track for target 2 to coalesce onto the track of target 1 in

the nearest neighbor EKF trial in Figure 6.b which explains
the large jump in RMSE for target 2.

A plot of the sensor performance through an example run
is shown in Figure 7. From tracking iteration 30 up to around
120, the two targets are very close is relative bearing, so merg-
ing occurs. This is counted as a missed detection. However,
even when the targets are well separated in bearing, there are
many missed detections still present. There is also significant
noise in the bearing measurement through the experiment,
namely around iteration 30 where the bearing error is nearly
10 degrees.

VI. CONCLUSION

In this paper we proposed a tracking and planning algorithm
for a bearing-only sensor in the presence of merged measure-
ments. We developed an EKF-like tracking approach to an
existing merged measurement tracker and then incorporated
this information into our planning strategy. This allows the
sensor to anticipate merging events and plan accordingly. We
presented simulation results as well as real experiments with
ground vehicles equipped with camera sensors.
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