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Abstract We propose a novel distributed method for convex optimization problems with a
certain separability structure. The method is based on the augmented Lagrangian framework.
We analyze its convergence and provide an application to two network models, as well as
to a two-stage stochastic optimization problem. The proposed method compares favorably
to two augmented Lagrangian decomposition methods known in the literature, as well as to
decomposition methods based on the ordinary Lagrangian function.
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1 Introduction

Let Xi ⊆Rni , i ∈I = {1,2, . . . ,N} be nonempty closed, convex subsets of ni-dimensional
Euclidean space respectively, and fi : Rni → R, i ∈I be convex functions. Furthermore let
Ai be m×ni matrices, i = 1,2, . . . ,N. The focus of our investigation is the following convex
optimization problem

min
N

∑
i=1

fi(xi)

subject to
N

∑
i=1

Aixi = b,

xi ∈Xi, i = 1,2, . . . ,N.

(1)
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Problems of the form (1) are called extended monotropic optimization problems in [3]. The
term monotropic optimization was introduced for the special case of ni = 1, i = 1,2, . . . ,N
in [19, 20], where problems of this type were analysed. In this paper, we propose a new
decomposition method for solving problem (1) in a distributed fashion, which we call the
Accelerated Distributed Augmented Lagrangian method.

The ever increasing size and complexity of modern day problems, coupled with the
ongoing advancements in massively parallel processing capabilities of contemporary com-
puters, have motivated recent advances in developing efficient, distributed computing meth-
ods. Distributed algorithms decompose the original problem into smaller, more manageable
subproblems that are solved iteratively, either in a parallel or in a sequential fashion. Further-
more, in certain problems arising in communication networks, sensor networks, networked
robotics, and other areas, it is desirable that the method relies only on local information
exchanges between the decomposed subproblems during the iterative solution procedure,
without the need to maintain a global “supervising” and coordinating unit.

Many decomposition methods rely on the decomposable structure of the dual func-
tion. We refer the interested reader to [4] for an overview. However, such dual methods
suffer from well-documented disadvantages, such as slow convergence rates, and, also,
non-uniqueness of solutions, which necessitates the application of advanced techniques
of non-smooth optimization in order to ensure numerical stability and efficiency of the
procedure. These drawbacks are alleviated by the application of regularization techniques
such as bundle methods and by the augmented Lagrangian framework, which is akin to
the regularization of the dual function. A significantly smaller number of works is avail-
able on decomposition of augmented Lagrangians. The convergence speed and the numer-
ical advantages of augmented Lagrangian methods (see, e.g., [13, 16, 17, 21, 22]) pro-
vide a strong motivation for creating decomposed versions of them. Early specialized tech-
niques that allow for decomposition of the augmented Lagrangian can be traced back to
the works [6, 11, 12, 30–32]. More recent literature involves the Diagonal Quadratic Ap-
proximmation (DQA) algorithm [2, 15, 24] and the Alternating Direction Method of Mul-
tipliers (ADMM) [4, 5, 7, 9, 10]. The DQA method replaces each minimization step in
the augmented Lagrangian algorithm by a separable approximation of the augmented La-
grangian function. The ADMM methods are based on the relations between splitting meth-
ods for monotone operators, such as Douglas-Rachford splitting, and the proximal point al-
gorithm [10, 11]. In [7, 9], the authors develop the Alternating Step Method (ASM), which
is a specialized, equivalent version of ADMM when applied on problems of the form (1).
Note that the analysis in [9] is limited to cases where ni = 1 for all i, however, the extension
for ni > 1 is straightforward.

Our paper is organized as follows. In section 2, we introduce the necessary notions and
notation. We also provide a description of the DQA and ASM and recall their convergence
properties. In section 3, we describe the proposed method ADAL and contrast it to the ASM
and DQA methods. In section 4, we analyze the convergence of ADAL. Section 5 contains
numerical results for a network utility maximization problem, a network flow problem, and
a two-stage stochastic capacity expansion problem.
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2 Preliminaries

We denote

f (x) =
N

∑
i=1

fi(xi),

where x = [x>1 , . . . ,x
>
N ]
> ∈ Rn with n = ∑

N
i=1 ni. Furthermore, we denote A = [A1 . . .AN ] ∈

R
m×n. The constraint

N
∑

i=1
Aixi = b of problem (1) takes on the form Ax = b. We associate

Lagrange multipliers λ ∈Rm with that constraint. The Lagrange function is defined as

L(x,λ ) = f (x)+ 〈λ ,Ax−b〉=
N

∑
i=1

Li(xi,λ )−〈b,λ 〉,

where
Li(xi,λ ) = fi(xi)+ 〈λ ,Aixi〉.

The dual function has the form

g(λ ) = inf
x∈X

L(x,λ ) =
N

∑
i=1

gi(λ )−〈b,λ 〉,

where X = X1×X2 · · ·×XN and

gi(λ ) = inf
xi∈Xi

[
fi(xi)+ 〈λ ,Aixi〉

]
.

The dual function is decomposable and this gives rise to various decomposition methods
addressing the dual problem, which is given by

max
λ∈Rm

N

∑
i=1

gi(λ )−〈b,λ 〉. (2)

The augmented Lagrangian associated with problem (1) has the form:

Λρ(x,λ ) = f (x) + 〈λ ,Ax−b〉 + ρ

2
‖Ax−b‖2, (3)

where ρ > 0 is a penalty parameter. We recall the standard augmented Lagrangian method
(sometimes refered to as the “Method of Multipliers” in existing literature):

Augmented Lagrangian Method
Step 0. Set k = 1 and define initial Lagrange multipliers λ 1.
Step 1. For a fixed vector λ k, calculate x̂k as a solution of the problem:

min
x∈X

Λρ(x,λ k). (4)

Step 2. If the constraints
N
∑

i=1
Aix̂k

i = b are satisfied, then stop (optimal solution found). Oth-

erwise, set :

λ
k+1 = λ

k +ρ

(
N

∑
i=1

Aix̂k
i −b

)
, (5)

Increase k by one and return to Step 1.
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We refer to the standard augmented Lagrangian method (4)-(5) as the “centralized” aug-
mented Lagrangian method in the rest of this paper. Similarly, we will use the term “central-
ized” to refer to solving a problem without using any decomposition approach.

We use NX (x) to denote the normal cone to the set X at the point x [26], i.e.,

NX (x) = {h ∈Rn : 〈h,y−x〉 ≤ 0, ∀ y ∈X }.

The convex subdifferential of a convex function f at a point x is denoted by ∂ f (x).
The convergence of the Augmented Lagrangian Method is ensured when problem (2)

has an optimal solution independently of the starting point λ 1. Under convexity assump-
tions and a constrain qualification condition, every accumulation point of the sequence {xk}
is an optimal solution of problem (1). Furthermore, the augmented Lagrangian method ex-
hibits convergence properties also in a non-convex setting assuming that the functions fi,
i = 1, . . .N are twice continuously differentiable and the strong second-order conditions
of optimality are satisfied. We refer to [18] for the analysis of the augmented Lagrangian
method in the convex case and to [26] for the non-convex case.

A major drawback of the Augmented Lagrangian Method stems from the fact that (4)
is not amenable to decomposition due to the quadratic penalty term in (3). This issue is
addressed by creating successive separable approximations of the quadratic term in [2, 15,
24] and by using alternating linearization techniques in [14].

For a given monotropic problem (1), we define the maximum degree q as a measure of
sparsity of the total constraint matrix A. For each constraint j = 1, . . . ,m, we introduce a
measure of involvement. We denote the number of locations associated with this constraint
by q j, that is, q j is the number of all i ∈I : [Ai] j 6= 0. Here, [Ai] j denotes the j-th row of
matrix Ai and 0 stands for a zero vector of proper dimension. We define q to be the maximum
over all q j, i.e.

q = max
1≤ j≤m

q j. (6)

It will be shown in Section 4 that q plays a critical role in the convergence properties of the
proposed method.

In [24], the Diagonal Quadratic Approximation (DQA) method based on the augmented
Lagrangian function is developed for problems of the form (1) and its convergence is an-
alyzed. The method has found applications in stochastic programming, engineering, and
finance. The idea of DQA is to produce a separable approximation of the primal step of the
centralized augmented Lagrangian Method (4)-(5), which iteratively converges to the actual
primal step of the Augmented Lagrangian Method. This is achieved by introducing an inner
loop of minimization and correction steps. For i= 1, . . . ,N, the local augmented Lagrangian
function Λ i

ρ : Rni ×Rn×Rm→ R is defined according to

Λ
i
ρ(xi,xk,λ ) = fi(xi) + 〈λ ,Aixi〉 +

ρ

2
‖Aixi +

j 6=i

∑
j∈I

A jxk
j−b‖2. (7)

The DQA method uses a parameter τ ∈ (0,1), which is utilized as a stepsize in updating the
primal variables. It works as follows.



An augmented Lagrangian Method for Distributed Optimization 5

Diagonal Quadratic Approximation (DQA)
Step 0. Set k = 1, s = 1 and define initial Lagrange multipliers λ 1 and initial primal vari-

ables x1,1.
Step 1. For fixed Lagrange multipliers λ

k and for every i∈I , determine x̂k,s
i as the solution

of:
min

xi∈Xi
Λ

i
ρ(xi,xk,s,λ k). (8)

Step 2. For every i ∈I , if Aix̂k,s
i = Aixk,s

i , then go to step 3; otherwise, set

xk,s+1
i = xk,s

i + τ(x̂k,s
i −xk,s

i ), (9)

increase s by 1 and go to Step 1.

Step 3. Set xk,s = xk+1. If the constraint
N
∑

i=1
Aixk+1

i = b is satisfied, then stop (optimal solu-

tion found). Otherwise, set :

λ
k+1 = λ

k +ρ

(
N

∑
i=1

Aixk+1
i −b

)
, (10)

and s = 1, xk+1,1 = xk+1, increase k by one and return to Step 1.

Convergence of the DQA method is guaranteed if the stepsize τ satisfies 0 < τ < 1
q ,

where q is defined in (6). The inner-loop termination criterion in Step 2 of DQA requires
that Aix̂k,s

i = Aixk,s
i for every i ∈I , which in practice is achieved within a given numerical

accuracy ε . This entails that the augmented Lagrangian is calculated with an error bounded
by 1

ρ
εq (see [24, Lemma 1]).

Another dual decomposition approach is that of alternating directions. Splitting methods
such as the Alternating Directions Method of Multipliers (ADMM) could also be considered
a form of augmented Lagrangian algorithm, although their convergence mechanism is quite
different. In [7, 9], the authors apply the generalized ADMM on monotropic optimization
problems and derive a simplified algorithmic form of ADMM, which they call the Alternat-
ing Step Method (ASM). We refer to ASM in our presentation instead of generically refering
to ADMM because it is most similar to ADAL.

The ASM algorithm uses the following form of local augmented Lagrangian Λ̄ i
ρ(xi,xk,λ k)

Λ̄
i
ρ(xi,xk,λ ) = fi(xi)+ 〈λ ,Aixi〉+

ρ

2

m

∑
l=1

(
[Ai]lxi− [Ai]lxk

i +
1
ql

(
∑ j∈I [A j]lxk

j−bl
))2

,

where ql denotes the degree of constraint l, as per the aforementioned definition. The ASM
method works as follows.

Alternating Step Method (ASM)
Step 0. Set k = 1 and define initial Lagrange multipliers λ 1 and initial primal variables x1.
Step 1. For fixed Lagrange multipliers λ

k and for every i = 1, . . . ,N, determine x̂k
i as the

solution of the following problem:

min
xi∈Xi

Λ̄
i
ρ(xi,xk,λ k) (11)
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Step 2. For every i ∈I , set
xk+1

i = xk
i +σ(x̂k

i −xk
i ), (12)

where σ is a non-negative stepsize satisfying σ ∈ (0,2).

Step 3. If the constraint
N
∑

i=1
Aix̂k

i = b is satisfied, then stop (optimal solution found). Other-

wise, set :

λ
k+1
j = λ

k
j +

ρσ

q j

(
N

∑
i=1

[Aix̂k
i ] j−b j

)
, (13)

increase k by one and return to Step 1.

The ASM method allows for adapted stepsizes in Step 3, containing the degrees of each
constraint. Furthermore, some terms involving q j have found their way into the quadratic
penalty term. The method introduces the relaxation factor σ ∈ (0,2) from the theory of the
generalized ADMM [8, 10] and utilizes it as a stepsize for the primal update. Note that, for
σ = 1, we obtain the classical ADMM [8, 10]. We refer to [5, 8, 10] for a discussion on the
general properties of the ADMM and its applications.

3 The accelerated Distributed Augmented Lagrangian Method

In this paper, we propose a new Augmented Lagrangian decomposition method, which we
call Accelerated Distributed Augmented Lagrangian (ADAL). The method uses the same lo-
cal Lagrangian approximation of DQA, but eliminates the inner loop of the DQA procedure.
Nonetheless, the method enjoys convergence to the optimal solution of (1).

The ADAL has two parameters: a positive penalty parameter ρ and a stepsize parameter
τ ∈ (0,1). Each iteration of ADAL is comprised of three steps: i) a minimization step of
all the local augmented Lagrangians, ii) an update step for the primal variables, and iii) an
update step for the dual variables. The computations at each step are performed in a parallel
fashion, so that ADAL resembles a Jacobi-type algorithm; see [4] for more details on Jacobi
and Gauss-Seidel type algorithms. ADAL works as follows.

Accelerated Distributed Augmented Lagrangian (ADAL)
Step 0. Set k = 1 and define initial Lagrange multipliers λ 1 and initial primal variables x1.
Step 1. For fixed Lagrange multipliers λ

k, determine x̂k
i for every i ∈I as the solution of

the following problem:
min

xi∈Xi
Λ

i
ρ(xi,xk,λ k). (14)

Step 2. Set for every i ∈I

xk+1
i = xk

i + τ(x̂k
i −xk

i ). (15)

Step 3. If the constraints
N
∑

i=1
Aixk+1

i = b are satisfied and Aix̂k
i = Aixk

i , then stop (optimal

solution found). Otherwise, set:

λ
k+1 = λ

k +ρτ

(
N

∑
i=1

Aixk+1
i −b

)
, (16)

increase k by one and return to Step 1.
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After the local calculations (14) have been performed, the primal variables xk
i are up-

dated in Step 2. In Section 4, we show that the method converges for a stepsize τ ∈ (0, 1
q ).

A critical point for the convergence of our method is the choice of the xk+1 variables
for performing the dual update (16), instead of the minimizers x̂k of the local augmented
Lagrangians (14). In the DQA method, the terms Ax̂k are equal to Axk+1 in (10) due to
the loop between Step 1 and Step 2 of DQA, which is eliminated in the ADAL algorithm.
The dual update in the centralized augmented Lagrangian Method (5) directly uses the min-
imizers of the augmented Lagrangian. Similarly, the ADMM methods (and, consequently,
ASM) [5, 7–10] use x̂k as well.

In the rest of this section, we briefly discuss what information is needed to perform each
step of ADAL at a given iteration k. Obviously, the primal update step (15) is local to each
subproblem i and does not require any message exchanges to be performed, so we limit our
discussion to steps 1 and 3. The particular information exchange patterns are relevant when
problems need to be solved in the absence of a central processing unit that has access to
and coordinates all the information generated by the problem. Such situations appear, for
example, when solving optimization problems over networked systems, where every node
of the network is a processing unit that can only access its own local information as well as
information that is available from its one-hop neighbors.

According to (16), the update law for the dual variable of the j-th constraint is

λ
k+1
j = λ

k
j +ρτ

(
N

∑
i=1

[
Aixk+1

i
]

j−b j

)
.

This implies that the udpate of λ j needs only information from those i for which [Ai] j 6= 0.
Furthermore, recall that

Λ
i
ρ(xi,xk,λ ) = fi(xi) + 〈λ ,Aixi〉 +

ρ

2
‖Aixi +

j 6=i

∑
j∈I

A jxk
j−b‖2.

Since 〈λ ,Aixi〉 = ∑
m
j=1 λ j[Aixi] j, we see that, in order to compute (14), each subproblem

i needs access only to those λ j for which [Ai] j 6= 0. Moreover, the penalty term of each Λ i
ρ

can be equivalently expressed as

‖Aixi +
j 6=i

∑
j∈I

A jxk
j−b‖2 =

m

∑
l=1

([
Aixi

]
l +

j 6=i

∑
j∈I

[
A jxk

j
]

l−bl

)2

.

The above penalty term is involved only in the minimization computation (14). Hence, for
those l such that [Ai]l = 0, the terms ∑

j 6=i
j∈I

[
A jxk

j
]

l −bl are just constant terms in the mini-
mization step, and can be excluded. This implies that subproblem i needs access only to the
decisions

[
A jxk

j
]

l from all subproblems j 6= i that are involved in the same constraints l as i.
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4 Convergence.

In order to prove convergence of ADAL, we need the following two assumptions:

(A1) The functions fi : Rni →R, i∈I = {1,2, . . . ,N} are convex and Xi ⊆Rni , i = 1, . . . ,N
are nonempty closed convex sets.

(A2) The Lagrange function L has a saddle point (x∗,λ ∗) ∈Rn×Rm:

L(x∗,λ ) ≤ L(x∗,λ ∗) ≤ L(x,λ ∗) ∀ x ∈X , ∀ λ ∈Rm. (17)

(A3) All subproblems (14) are solvable at any iteration k ∈N.

Assumption (A2) implies that the point x∗ is a solution of problem (1), the point λ ∗ is a
solution of (2) and the strong duality relation holds, i.e., the optimal values of both problems
are equal.

Assumption (A3) is satisfied if for every i = 1, . . . ,N, either the set Xi is compact, or the
function fi(xi)+

ρ

2 ‖Aixi− b̃‖2 is inf-compact for any vector b̃. The latter condition, means
that the level sets of the function are compact sets, implying that set {x ∈ Xi : fi(xi) +
ρ

2 ‖Aixi− b̃‖2 ≤ α} is compact for any α ∈R.
Define the residual r(x) ∈ Rm as the vector containing the amount of all constraint

violations with respect to primal variable x, i.e. r(x) = ∑
N
i=1 Aixi−b.

To avoid cluttering the notation, we will use the simplified notation ∑i to denote sum-
mation over all i ∈I , i.e. ∑i = ∑

N
i=1, unless explicitly noted otherwise. Also, we define the

auxiliary variables:
λ̂

k = λ
k +ρr(x̂k), (18)

available at iteration k. Note that this happens to be the dual update rule in the centralized
augmented Lagrangian Method.

The basic idea of the proof is to introduce the Lyapunov (merit) function

φ(xk,λ k) =
N

∑
i=1

ρ‖Ai(xk
i −x∗i )‖2 +

1
ρ
‖λ k +ρ(1− τ)r(xk)−λ

∗‖2. (19)

We will show in Theorem 1 that this merit function is strictly decreasing during the execution
of the ADAL algorithm (14)-(16), given that the stepsize τ satisfies the condition 0 < τ <
1/q. Then, in Theorem 2 we argue that this strict decrease property implies convergence of
the primal and dual variables to their respective optimal values.

We begin the proof by utilizing the first order optimality conditions of all the subprob-
lems (14) in order to derive some necessary inequalities.

Lemma 1 Assume (A1)–(A3). The following inequality holds:

1
ρ
(λ̂ k−λ

∗)>(λ k− λ̂
k) ≥ ρ ∑

i

[
(Aix̂k

i −Aix∗i )
>

∑
j 6=i

A j(xk
j− x̂k

j)

]
(20)

where (x∗,λ ∗) is a saddle point of the Lagrangian L and λ k, λ̂ k, x̂k
i , and xk

j are calculated
at iteration k.

Proof The first order optimality conditions for problem (14) imply the following inclusion
for the minimizer x̂k

i

0 ∈ ∂ fi(x̂k
i )+A>i λ

k +ρA>i
(

Aix̂k
i +∑

j 6=i
A jxk

j−b
)
+NXi(x̂

k
i ) (21)
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We infer that subgradients sk
i ∈ ∂ fi(x̂k

i ) and normal elements zk
i ∈NXi(x̂

k
i ) exist such

that we can express (21) as follows:

0 = sk
i +A>i λ

k +ρA>i
(

Aix̂k
i +∑

j 6=i
A jxk

j−b
)
+ zk

i . (22)

Taking inner product with x∗i − x̂k
i on both sides of this equation and using the definition of

a normal cone, we obtain

〈sk
i +A>i λ

k +ρA>i
(

Aix̂k
i +∑

j 6=i
A jxk

j−b
)
,x∗i − x̂k

i 〉 = 〈−zk
i ,x
∗
i − x̂k

i 〉 ≥ 0. (23)

Using the variables λ̂ k defined in (18), we substitute λ k in (23) and obtain:

0 ≤ 〈sk
i +A>i

[
λ̂

k−ρ

(
∑

j
A jx̂k

j−b
)
+ρ

(
Aix̂k

i +∑
j 6=i

A jxk
j−b

)]
,x∗i − x̂k

i 〉

= 〈sk
i +A>i

[
λ̂

k +ρ

(
∑
j 6=i

A jxk
j−∑

j 6=i
A jx̂k

j

)]
,x∗i − x̂k

i 〉 (24)

The assumptions (A1) and (A2) entail that the following optimality conditions are satisfied
at the point (x∗,λ ∗):

0 ∈ ∂ fi(x∗i )+A>i λ
∗+NXi(x

∗
i ) for all i = 1, . . . ,N. (25)

Inclusion (25) implies that subgradients s∗i ∈ ∂ fi(x∗i ) and normal vectors z∗i ∈NXi(x
∗
i ) exist,

such that we can express (25) as:

0 = s∗i +A>i λ
∗+ z∗i

Taking inner product with x̂k
i −x∗i on both sides of this equation and using the definition of

a normal cone, we infer

〈s∗i +A>i λ
∗, x̂k

i −x∗i 〉 ≥ 0, for all i = 1, . . . ,N. (26)

Combining (24) and (26), we obtain the following inequalities for all i = 1, . . . ,N:

(x̂k
i −x∗i )

>
(

s∗i − sk
i +A>i (λ

∗− λ̂
k)−ρA>i

[
∑
j 6=i

A jxk
j−∑

j 6=i
A jx̂k

j
])
≥ 0. (27)

Using the monotonicity of the subdifferential mapping, we take out the terms involving the
subgradients

(
x̂k

i −x∗i
)>(s∗i − sk

i
)
≤ 0 and arrive at:

(x̂k
i −x∗i )

>
[
A>i (λ

∗− λ̂
k)−ρA>i

(
∑
j 6=i

A jxk
j−∑

j 6=i
A jx̂k

j
)]
≥ 0 ∀i = 1, . . . ,N. (28)

Adding the inequalities for all i = 1, . . . ,N and rearranging terms, we get:

(λ ∗− λ̂
k)>
[
∑

i
Ai(x̂k

i −x∗i )
]
≥ ρ ∑

i

[
(Aix̂k

i −Aix∗i )
>

∑
j 6=i

(A jxk
j−A jx̂k

j)
]

(29)

Substituting ∑
N
i=1 Aix∗i = b and ∑

N
i=1 Aix̂k

i −b = 1
ρ
(λ̂ k−λ k) in (29), we conclude that

1
ρ
(λ̂ k−λ

∗)>(λ k− λ̂
k) ≥ ρ ∑

i

[
(Aix̂k

i −Aix∗i )
>

∑
j 6=i

(A jxk
j−A jx̂k

j)
]

as required. �
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In the following two lemmata, we exploit the result from Lemma 1 and perform some
necessary manipulations that will allow us to prove the strict decrease property of the Lya-
punov (merit) function in Theorem 1 later on.

Lemma 2 Under assumptions (A1)–(A3), the following estimate holds:

ρ ∑
i

[
(Aixi

k−Aix∗i )
>(Aixk

i −Aix̂k
i )
]
+

1
ρ
(λ k−λ

∗)>(λ k− λ̂
k)

≥ ∑
i

ρ‖Ai(xk
i − x̂k

i )‖2 +
1
ρ
‖λ̂ k−λ

k‖2 + (λ̂ k−λ
k)>[r(xk)− r(x̂k)].

(30)

Proof Consider the result of Lemma 1 and add the term ρ ∑i

[
(Aix̂k

i −Aix∗i )>(Aixk
i −Aix̂k

i )
]

to both sides of inequality (20), which gives us

ρ ∑
i

[
(Aix̂k

i −Aix∗i )
>(Aixk

i −Aix̂k
i )
]
+

1
ρ
(λ̂ k−λ

∗)>(λ k− λ̂
k)

≥ ρ ∑
i

[
(Aix̂k

i −Aix∗i )
>(Aixk

i −Aix̂k
i )
]
+ ρ ∑

i

[
(Aix̂k

i −Aix∗i )
>

∑
j 6=i

(A jxk
j−A jx̂k

j)
]
.

Grouping the terms at the right-hand side of the inequality by their common factor, we
transform the estimate as follows:

ρ ∑
i

[
(Aix̂k

i −Aix∗i )
>(Aixk

i −Aix̂k
i )
]
+

1
ρ
(λ̂ k−λ

∗)>(λ k− λ̂
k)

≥ ρ ∑
i

[
(Aix̂k

i −Aix∗i )
>

∑
j
(A jxk

j−A jx̂k
j)
]

(31)

Recall that ∑ j A j(xk
j− x̂k

j) = r(xk)− r(x̂k), which means that this term is a constant factor
with respect to the summation over i in the right hand side of (31). Moreover, ∑i Aix∗i = b.
Substituting these terms at the right-hand side of (31), yields

ρ ∑
i

[
(Aix̂k

i −Aix∗i )
>(Aixk

i −Aix̂k
i )
]
+

1
ρ
(λ̂ k−λ

∗)>(λ k− λ̂
k)

≥ ρ

[
∑

i
(Aix̂k

i −Aix∗i )
]>[

r(xk)− r(x̂k)
]

= ρ

[
(∑

i
Aix̂k

i −b)>
[
r(xk)− r(x̂k)

]]
= (λ̂ k−λ

k)>[r(xk)− r(x̂k)]

(32)

Next, we represent

(Aix̂k
i −Aix∗i ) = (Aixk

i −Aix∗i )+(Aix̂k
i −Aixk

i )

and λ̂
k−λ

∗ = (λ k−λ
∗)+(λ̂ k−λ

k),

in the left-hand side of (32). We obtain

ρ ∑
i

[
(Aixi

k−Aix∗i )
>(Aixk

i −Aix̂k
i )
]
+

1
ρ
(λ k−λ

∗)>(λ k− λ̂
k)

≥ ρ ∑
i
‖Ai(xk

i − x̂k
i )‖2 +

1
ρ
‖λ̂ k−λ

k‖2 +(λ̂ k−λ
k)>[r(xk)− r(x̂k)],

which completes the proof. �
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In the next lemma, we obtain a modified version of (30) whose right-hand side is non-
negative. This result is utilized in Theorem 1 to show that the Lyapunov (merit) function
(19) is strictly decreasing. We shall use the following “pseudo-dual” variable

λ̄
k = λ

k +ρ(1− τ)r(xk). (33)

Lemma 3 Under the assumptions (A1)–(A3), the following estimate holds

ρ ∑
i

[
(Aixi

k−Aix∗i )
>(Aixk

i −Aix̂k
i )
]
+

1
ρ
(λ̄ k−λ

∗)>(λ k− λ̂
k)

≥ ρ

2 ∑
i
‖Ai(xk

i − x̂k
i )‖2 +

( τ

ρ
− τ2q

2ρ

)
‖λ k− λ̂

k‖2, (34)

where λ̄ k are defined in (33).

Proof Adding 1
ρ

[
ρ(1− τ)r(xk)

]>
(λ k− λ̂ k) = −(1− τ)ρr(xk)>r(x̂k) to both sides of in-

equality (30) we get:

ρ ∑
i

[
(Aixi

k−Aix∗i )
>(Aixk

i −Aix̂k
i )
]
+

1
ρ
(λ̄ k−λ

∗)>(λ k− λ̂
k)

≥ ρ ∑
i
‖Ai(xk

i − x̂k)‖2 +
1
ρ
‖λ̂ k−λ

k‖2 + (λ̂ k−λ
k)>
[
r(xk)− r(x̂k)

]
− (1− τ)ρr(xk)>r(x̂k). (35)

Consider the term (λ̂ k−λ k)>
[
r(xk)−r(x̂k)

]
− (1−τ)ρr(xk)>r(x̂k) at the right hand side

of (35). We manipulate it to yield:

(λ̂ k−λ
k)>
[
r(xk)− r(x̂k)

]
− (1− τ)ρr(xk)>r(x̂k) = (36)

= ρr(x̂k)

[
r(xk)− r(x̂k)

]
− (1− τ)ρr(xk)>r(x̂k)

= ρr(x̂k)>
[
r(xk)− r(x̂k)

]
− (1− τ)ρ

[
r(xk)− r(x̂k)+ r(x̂k)

]>
r(x̂k)

= τρr(x̂k)>
[
r(xk)− r(x̂k)

]
− (1− τ)ρ‖r(x̂k)‖2

= τ(λ̂ k−λ
k)>∑

i
Ai(xk

i − x̂k
i )− (1− τ)

1
ρ
‖λ̂ k−λ

k‖2.

Substituting back in (35), we obtain:

ρ ∑
i

[
(Aixi

k−Aix∗i )
>(Aixk

i −Aix̂k
i )
]
+

1
ρ
(λ̄ k−λ

∗)>(λ k− λ̂
k)

≥ ρ ∑
i
‖Ai(xk

i − x̂k
i )‖2 +

τ

ρ
‖λ̂ k−λ

k‖2 + τ ∑
i
(λ̂ k−λ

k)>Ai(xk
i − x̂k

i ). (37)

Each of the terms τ(λ̂ k−λ k)>Ai(xk
i − x̂k

i ) on the right hand side of (37) can be bounded
below by considering

τ(λ̂ k−λ
k)>(Aixk

i −Aix̂k
i ) = τ

m

∑
j=1

(λ̂ k
j −λ

k
j )
>[Ai(xk

i − x̂k
i )
]

j

≥ − 1
2

m

∑
j=1

(
ρ

[
Ai(xk

i − x̂k
i )
]2

j
+

τ2

ρ
(λ̂ k

j −λ
k
j )

2

)
,
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where
[
·
]

j denotes the j-th row of a matrix, and λ j indicates the Lagrange multiplier of the
j-th constraint. Note, however, that some of the rows of Ai might be zero. If [Ai] j = 0, then
it follows that (λ̂ k

j −λ k
j )
>[Ai(xk

i − x̂k
i )
]

j = 0. Hence, denoting the set of nonzero rows of Ai

as Qi, i.e., Qi = { j = 1, . . . ,m : [Ai] j 6= 0}, we can obtain a tighter lower bound for each
τ(λ̂ k−λ k)>Ai(xk

i − x̂k
i ) as

τ(λ̂ k−λ
k)>(Aixk

i −Aix̂k
i ) ≥ −

1
2 ∑

j∈Qi

(
ρ

[
Ai(xk

i − x̂k
i )
]2

j
+

τ2

ρ
(λ̂ k

j −λ
k
j )

2

)
. (38)

Now, recall from (6) that q denotes the maximum number of non-zero blocks [Ai] j over all
j (in other words, q is the maximum number of locations i that are involved in the constraint
j). Then, summing inequality (38) over all i, we observe that each quantity (λ̂ k

j − λ k
j )

2 is
included in the summation at most q times.

This observation leads us to the bound

τ ∑
i
(λ̂ k−λ

k)>Ai(xk
i − x̂k

i ) ≥ −
1
2

(
∑

i
ρ‖Ai(xk

i − x̂k
i )‖2 +

τ2q
ρ
‖λ̂ k−λ

k‖2
)
. (39)

Finally, we substitute (39) into (37) to get

ρ ∑
i

[
(Aixi

k−Aix∗i )
>(Aixk

i −Aix̂k
i )
]
+

1
ρ
(λ̄ k−λ

∗)>(λ k− λ̂
k)

≥ ∑
i

ρ

2
‖Ai(xk

i − x̂k
i )‖2 +

( τ

ρ
− τ2q

2ρ

)
‖λ k− λ̂

k‖2, (40)

which completes the proof. �

We are ready to prove the key result pertaining to the convergence of our method. We
shall show that the function φ defined in (19) is a Lyapunov function for ADAL.

Theorem 1 Assume (A1)–(A3). If the ADAL method uses stepsize τ satisfying

0 < τ <
1
q
,

then, the sequence {φ(xk,λ k)}, with φ(xk,λ k) defined in (19), is strictly decreasing.

Proof We show that the dual update step (16) in the ADAL method results in the following
update rule for the variables λ̄ k, which are defined in (33):

λ̄
k+1 = λ̄

k + τρr(x̂k) (41)

Indeed,

λ
k+1 = λ

k + τρr(xk+1)

= λ
k + τρ

[
(1− τ)r(xk)+ τr(x̂k)

]
= λ

k + τ

[
− (1− τ)ρ

(
r(x̂k)− r(xk)

)
+ρr(x̂k)

]
= λ

k− (1− τ)ρτ

(
r(x̂k)− r(xk)

)
+ τρr(x̂k) (42)
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Adding (1− τ)ρr(xk) to both sides of (42) and rearranging terms, we obtain

λ
k+1 +(1− τ)ρ

[
r(xk)+ τ

(
r(x̂k)− r(xk)

)]
= λ

k +(1− τ)ρr(xk)+ τρr(x̂k).

This is equivalent to

λ
k+1 +(1− τ)ρr(xk+1) = λ

k +(1− τ)ρr(xk)+ τρr(x̂k),

which is the update rule (41).
We define the progress at each iteration k of the ADAL method as

θk(τ) = φ(xk,λ k)−φ(xk+1,λ k+1).

We substitute λ̄ k in the formula for calculating the function φ and use relation (41). The
progress θk(τ) can be evaluated as follows:

θk(τ) =
N

∑
i=1

ρ‖Ai(xk
i −x∗i )‖2 +

1
ρ
‖λ̄ k−λ

∗‖2−
N

∑
i=1

ρ‖Ai(xk+1
i −x∗i )‖2− 1

ρ
‖λ̄ k+1−λ

∗‖2

=
N

∑
i=1

ρ‖Ai(xk
i −x∗i )‖2 +

1
ρ
‖λ̄ k−λ

∗‖2

−
N

∑
i=1

ρ‖Ai(xk
i −x∗i ) + τAi(x̂k

i −xk
i )‖2− 1

ρ
‖λ̄ k−λ

∗+ τρr(x̂k)‖2

= 2τ

[
ρ ∑

i

[
(Aixi

k−Aix∗i )
>(Aixk

i −Aix̂k
i )
]
+

1
ρ
(λ̄ k−λ

∗)>(λ k− λ̂
k)

]

− τ
2

[
∑

i
ρ‖Ai(x̂k

i −xk
i )‖2 +

1
ρ
‖λ̂ k−λ

k‖2

]
. (43)

We use Lemma 3 to substitute the positive term in (43) by its lower bound and obtain
that the progress at each iteration is estimated as follows:

θk(τ) ≥ 2τ

[
∑

i

ρ

2
‖Ai(xk

i − x̂k
i )‖2 +

( τ

ρ
− τ2q

2ρ

)
‖λ k− λ̂

k‖2

]
(44)

−τ
2

[
∑

i
ρ‖Ai(xk

i − x̂k
i )‖2 +

1
ρ
‖λ k− λ̂

k‖2

]

≥ τ

[
∑

i
(1− τ)ρ‖Ai(xk

i − x̂k
i )‖2 +

(
τ

ρ
− τ2q

ρ

)
‖λ k− λ̂

k‖2

]

≥ 0 whenever 0 < τ <
1
q
< 1.

Relation (44) implies that θk > 0 during the execution of ADAL. Indeed, the coefficients
of all terms at the right-hand side are positive due to the choice of parameters ρ > 0 and
0 < τ < 1

q ≤ 1. This means that the lower bound on θk(τ) can be zero only if all terms are

equal to zero, which means that λ k− λ̂ k = ρr(x̂k) = 0, and Aixk
i = Aix̂k

i , for all i = 1, . . . ,N.
In such a case, the ADAL method stops at Step 3. Thus, θk > 0 during the execution of
ADAL, which in turn means that the merit function φ(xk,λ k) is strictly decreasing. �



14 N. Chatzipanagiotis, D. Dentcheva, M. Zavlanos

Theorem 2 In addition to (A1)-(A3), assume that the sets Xi are bounded for all i= 1, . . .N.
Then the ADAL method either stops at an optimal solution of problem (2) or generates a
sequence of λ k converging to an optimal solution of it. Any sequence {xk} generated by the
ADAL algorithm has an accumulation point and any such point is an optimal solution of
problem (1).

Proof If the method stops at Step 3 in some iteration k0, then r(x̂k0) = 0 and Aix̂k0
i = Aixk0

i .
In this case, the optimality conditions (21) for problems (14) become

0 ∈ ∂ fi(x̂k0
i )+A>i λ

k0 +NXi(x̂
k
i ), i = 1 . . . ,N

which implies that x̂k0
i is an optimal solution of the problem minxi∈Xi Li(xi,λ

k0) with opti-
mal Lagrange multiplier λ k0 for all i = 1 . . . ,N. Thus, λ k0 is a solution of problem (2) and
xk0 is a solution of problem (1).

Now, we consider the case, in which the method generates an infinite sequence of iter-
ates. Relation (44) implies that

φ(xk+1,λ k+1)≤ φ(xk,λ k)−τ

[
∑

i
(1−τ)ρ‖Ai(xk

i − x̂k
i )‖2+

(
τ

ρ
− τ2q

ρ

)
‖λ k− λ̂

k‖2
]

(45)

Iterating inequality (45) for k = 1,2, . . . and dividing by τ > 0, we obtain:

∞

∑
k=1

[
N

∑
i=1

(1− τ)ρ‖Ai(xk
i − x̂k

i )‖2 +
(

τ

ρ
− τ2q

ρ

)
‖λ k− λ̂

k‖2

]
<

1
τ

φ(x1,λ 1) (46)

This implies that the sequence {Aix̂k
i −Aixk

i } converges to zero as k→ ∞. We substitute
λ̂ k−λ k = ρr(x̂k) at the left-hand side of (46) and infer that the sequence {r(x̂k)} converges
to zero whenever k→ ∞. By the monotonicity and boundedness properties of φ(xk,λ k), we
conclude that the sequence {λ k} is convergent as well. We denote limk→∞ λ k = µ .

Due to the boundedness of Xi all sequences {xk
i }, i = 1, . . .N, are bounded. This means

that the sequences {xk
i } have accumulation points x̃i, which are also accumulation points of

{x̂k
i } due to Step 2 of the ADAL algorithm. We can choose a subsequence K ⊂{1,2, . . .} so

that {xk
i }k∈K and {x̂k

i }k∈K converge to x̃i for all i = 1, . . . ,N. Denoting x̃ = (x̃1, . . . , x̃N)
>,

we observe that the point x̃ is feasible due to the closedness of the sets Xi and the continuity
of r(·).

For any i = 1, . . . ,N, consider the sequence {sk
i }k∈K , where sk

i are the subgradients
of fi from the optimality condition (22) for problems (14). The subdifferential mapping
x ⇒ ∂ f (x) of any finite-valued convex function defined onRn is upper semi-continuous and
has compact images. Therefore, the sequences {sk

i }k∈K have convergent subsequences due
to a fundamental result that goes back to [1]. We can choose K1 ⊂K such that {sk

i }k∈K1
converge to some s̃i ⊂ ∂ fi(x̃i) for all i = 1, . . . ,N.

Passing to the limit in equation (22), we infer that each sequence {zk
i }k∈K1 converges to a

point z̃i, i= 1, . . . ,N. The mapping xi ⇒NXi(xi) has closed graph and, hence, z̃i ∈NXi(x̃i).
After the limit pass in (22) over k ∈K1, we conclude that

0 = s̃i +A>i µ + z̃k
i , ∀ i = 1 . . . ,N.

This relation together with the feasibility of x̃ implies that x̃ is a solution of problem (1) and
µ is a solution of problem (2). �
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Note that if r(x̂k0) = 0 at some iteration k0 but Aix̂k0
i 6= Aixk0

i , then the ADAL method
will iterate with the same Lagrange multipliers until the information is synchronized (Aix̂k

i =
Aixk

i for all i = 1, . . .N) resembling one inner loop of the DQA method.

Remark 1 The ADAL method and its convergence analysis are presented with a single
penalty parameter ρ ∈R+. Nevertheless, the constraints can be re-scaled beforehand, which
amounts to using different penalty parameters ρ j, j = 1, . . .m for each constraint. The con-
vergence follows in such a case by exactly the same line of arguments. However, the penalty
parameter ρ should be kept fixed from iteration to iteration.

Since we have now established convergence of ADAL in theory, it is also important to
state the following observations regarding its behavior in practical applications.

Although, we have established which stepsizes guarantee theoretical convergence, we
have undertaken numerical experiments, in which we multiply the primal and dual update
stepsizes with some relaxation factors βp,βd , in an effort to accelerate convergence. Here,
βp is applied to the primal variables update step and βd to the dual update step. Our numer-
ical experiments indicate that, at least for the applications considered here, we can employ
relaxation factors βp ∈ [1,2.5) and βd ∈ [1,q). The employment of such relaxations provides
reasonable acceleration to the overall convergence speed.

5 Numerical Experiments.

In the previous sections, we saw that the algorithmic forms of ADAL, DQA and ASM pos-
sess some interesting similarities and differences, despite the fact that their convergence
proofs follow completely different paths. In what follows, we briefly discuss some of the
connections between the algorithmic forms of these methods.

A key idea in the convergence analysis of Diagonal Quadratic Approximation (DQA)
method, presented in [24], is the calculation of the value of the augmented Lagrangian func-
tion from (4) by a sequence of successive separable approximations in the inner loop of
DQA. In other words, the minimization of the augmented Lagrangian (4) is approximated
iteratively by successive minimizations of the local augmented Lagrangians (8) and primal
variable update steps (9). Furthermore, convergence of DQA is guaranteed if the stepsize
τ satisfies 0 < τ < 1

q and the convergence rate is related to the scarcity of the matrix A.
In [24], values of τ = 1

2q are recommended. In ADAL, we find that the inner loop of DQA
can be terminated after just one iteration and obtain the fastest convergence, as simulations
suggest. Interestingly, numerical experiments have shown that convergence accelerates with
the increase of τ and in most cases the factor τ in the dual updates can be neglected without
compromising convergence.

The main difference between the algorithmic forms of ASM and ADAL is that ASM
uses different local augmented Lagrangians Λ̄ i

ρ(xi,xk,λ k) in Step (11), which involve the
constraint degrees in the quadratic terms. Furthermore, the steps with the dual variables are
performed with the use of the x̂k

i variables in ASM. In contrast, the convergence of ADAL
is compromised if we perform the dual update with the variables x̂k

i instead of xk+1
i . Finally,

ASM introduces the relaxation factor σ ∈ (0,2) from the theory of the generalized ADMM
and utilizes it as a stepsize for the primal update. In contrast, ADAL uses τ = 1/q.

We have implemented ADAL, DQA and ASM on two popular network optimization
problems: Network Utility Maximization [28] and Network flow problem [4]. Comparative
results between all algorithms are presented, which illustrate that ADAL is significantly
faster than both the DQA and ASM.
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Additionally, we apply all algorithms to solve a two-stage stochastic optimization prob-
lem. Dedicated decomposition methods are used for the numerical solution of such problems
due to their large dimensions in any realistic situation.

In all simulations, the maximum residual max j r j(xk), i.e., the maximum constraint vio-
lation among all constraints j = 1, . . . ,m, was monitored as a criterion of convergence. The
examined networks were randomly generated with the agents uniformly distributed in rect-
angle boxes. The inner loop termination criterion for DQA is set to be ‖Aix̂k

i −Aixk
i ‖∞ ≤

10−2 for every i = 1, . . . ,N, unless otherwise noted.
We note that, after extensive simulations, we have found that ASM and DQA required

relatively larger values of the penalty coefficient in comparison with ADAL, e.g., ρASM ≥
3ρADAL, and ρDQA ≥ 5ρADAL typically, (where the subscripts denote the respective ρ used
for each method), at least for the problems considered here.

5.1 Network Utility Maximization problem

Consider an undirected graph G = (N,A) with a set of nodes N and a set of arcs A. The set
of nodes is consisted of two subsets N = {S,D}, where S is the set of source nodes and D the
set of destination nodes. Let si denote the rate of resource production at node i ∈ S and also
let ti j denote the rate of a commodity flowing through arc (i, j). Each arc (i, j) has a feasible
range of flows ai j ≤ ti j ≤ bi j, where ai j,bi j are given numbers. Denote the neighborhood of
node i as Ci = { j : (i, j) ∈ A}. At this point, note that q = maxi |Ci| and, according to the
convergence analysis, the stepsize in the ADAL algorithm must be τ < 1

q . Nevertheless, as
mentioned in Section 4 the numerical experiments indicate that significant acceleration is
achieved if the stepsizes for the primal and dual updates are relaxed to τ =

βp
q and τ = βd

q ,
respectively, where βp ∈ [1,2.5) and βd ∈ [1,q).

The NUM problem entails solving

(NUM)

max U(s) = ∑
i∈S

Ui(si)

subject to ∑
{ j∈Ci}

ti j− ∑
{ j|i∈C j}

t ji = si, ∀ i ∈ S

ai j ≤ ti j ≤ bi j, ∀ (i, j) ∈ A

The NUM problem maximizes the amount of resources produced at the source nodes and
route the resources to the destination nodes. The constraints ∑{ j∈Ci} ti j −∑{ j|i∈C j} t ji = si
express the conservation of commodity flow at each source node. Note that, in our consid-
eration, the destination nodes are modeled as sinks and can absorb any amount of incoming
rates. We consider normalized rates si, ti j ∈ [0,1], without any loss of generality.

The requirement on the utility functions Ui(si) is that they are monotonically non-
decreasing expressing preference to larger transmission rates, i.e. an increase in the rate
of one node does not decrease the value of the total utility function to be maximized. In our
simulations, we choose U(s) = ∏i∈S(si) in order to maximize the product of rates, which
can be recast as the sum of logarithms U(s) = ∑i∈S log(si). This choice is typical in NUM
problems [28] and aims to produce a fairer resource allocation among all source nodes in the
network. Note that the choice U(s) = ∑i∈S si, would result in a problem where the maximum
rates are rewarded. In our case, this would lead to a trivial problem, in which the nodes in
communication range of the destinations are rewarded with the maximum rate 1 and the rest
with 0.
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Fig. 1 Random network of 50 sources (red dots) and 2 sinks (green squares). The rate of flow ti j through arc
(i, j) defines the thickness and color of the corresponding drawn line. Thin, light blue lines indicate weaker
links.
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Fig. 2 Evolution of the sum of rates ∑i∈S si during implementation of ADAL. The horizontal line depicts the
value obtained by solving the centralized problem. We observe that the distributed utility function converges
to the optimal solution very fast. Also included is the subfigure illustrating the evolution of individual rates
for every source.

Fig. 1 shows a network consisting of 50 sources and 2 sinks that is returned after apply-
ing the ADAL algorithm on (NUM). All subsequent simulation results involve networks of
this form, unless otherwise noted. Fig. 2 shows the evolution of the individual and total rates,
si and ∑i∈S si, respectively, corresponding to maximization of the utility U(s) = ∑i∈S log(si)
for fair allocation. We observe that the utility converges sufficiently to its optimal value in
only about 25 iterations. Next, we plot in Fig. 3 the evolution of the maximum residual dur-
ing the execution of ADAL. The figure contains results for networks of different sizes. An
encouraging observation is that network size does not appear to affect speed of convergence
dramatically, at least for the NUM problem considered here. Repeated simulations have
shown that convergence speed remains at this level of magnitude. Note that, in all cases,
the ratio of sources-to-sinks has been maintained the same at 25/1, in an effort to keep the
randomly generated networks as similar as possible.

As already mentioned, ADAL can be viewed as a truncated form of the DQA algorithm.
In Fig. 4, we explore the connections between the two methods. Fig.4(a) compares results
of truncating the inner loop of DQA at a predefined number of iterations M. For M = 1,
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Fig. 3 Constraint violation convergence of ADAL for different network sizes of 25, 50, 100 and 400 source
nodes. The ratio of sources-to-destinations is kept at 25/1 and the maximum degree q = 6 for all cases.

0 20 40 60 80 100 120 140 160
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

 

 
1
5
10
20
open

(a)

0 50 100 150 200 250

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Iterations

lo
g

 o
f 

M
ax

im
u

m
 C

o
n

st
ra

in
t 

V
io

la
ti

o
n

 

 
ADAL 5
ADAL 9
ADAL 14
DQA 5
DQA 9
DQA 14

(b)

Fig. 4 Constraint violation convergence for: a) Different exit criteria from the inner loop of DQA. The line
labeled ’open’ accounts for repeating the DQA inner loop until ‖Aix̂k

i −Aixk
i ‖∞ ≤ 10−2 for every i= 1, . . . ,N.

In the other instances we force exit if either the aforementioned criterion is satisfied or if the indicated amount
of iterations M has been surpassed. For M = 1 we obtain the ADAL method. The results correspond to a
network of 50 sources and 2 sinks with q = 6, b) Different network densities for the ADAL and DQA
methods. The results correspond to networks of 50 sources and 2 sinks with q = 5,9,14, respectively. In both
figures, the horizontal axis depicts the inner loop iterations for the case of DQA. Also, note that the step shape
of the DQA graphs in the figures is caused by the dual updates at each outer loop iteration.
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Fig. 5 Comparison between the ASM, DQA and ADAL methods, for a network of 50 sources, 2 sinks and
q = 7.
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we obtain the ADAL method. We observe that truncating the inner loop yields accelerated
convergence for DQA, with the fastest case being the ADAL algorithm. Note that no the-
oretical proof for the convergence of DQA for intermediate values of M exists. Moreover,
since the performance of both algorithms appears to depend on the maximum degree q we
have conducted simulations for different values of q. The results are illustrated in Fig. 4(b).
Surprisingly and in contrast to DQA, it appears that ADAL is not greatly affected by the
value of q, at least for the NUM problems considered here. Finally, in Fig. 5, we compare
the performance of the three methods. The ASM was implemented for σ = 1.9, the max-
imum value of σ that did not compromise convergence, while returning the best results.
Also, in all three methods the penalty parameter and initialization points were the same, in
order to preserve the homogeneity of results. We notice that ADAL performs significanlty
better than both ASM and DQA.

5.2 Linear Network flow problem

Closely related to the NUM problem is the optimal network flow problem. Here, we examine
the Linear Network Flow (LNF) case, where the arc costs are linear. LNF is a classical prob-
lem that has been studied extensively. The assignment, max-flow and shortest path problems
are special cases of LNF [4].

Consider a directed graph G = (N,A), with a set of nodes N and a set of arcs A. Each
arc (i, j) has associated with it a scalar ci j referred to as the cost coefficient of (i, j). Let ti j
denote the flow of arc (i, j) and consider the problem

(LNF)

min ∑
(i, j)∈A

ci jti j

subject to ∑
{ j|(i, j)∈A}

ti j− ∑
{ j|( j,i)∈A}

t ji = si, ∀ i ∈ N

ai j ≤ ti j ≤ bi j, ∀ (i, j) ∈ A

Essentially, the difference here is that we do not seek to maximize the si production rates
as in the NUM, but rather set some desired levels of si and seek to find the flows that keep
the problem feasible while minimizing the total cost. Moreover, the objective function is
linear. For the set of S source nodes, we have si > 0, ∀ i ∈ S, while for the set of D desti-
nation nodes we have si < 0, ∀ i ∈ D. The conservation of flow in the network requires that
∑i∈N si = 0. In the examples shown below, we also set a set of R nodes to be relays, that
is si = 0, ∀ i ∈ R. In addition, we set the cost coefficients ci j = 1 and the arc flow bounds
0≤ ti j ≤ 1 for simplicity, without any loss of generality.

Fig. 6 depicts the two typical, 50 node networks that were considered here. Also shown
are the corresponding flows as solved by the ADAL method. In Fig. 6(a) we consider a
case with 5 sources and 5 destinations, which are set a network diameter apart. On the
other hand, Fig. 6(b) depicts a case with 7 sources and 7 destinations, which are set half
the network diameter apart. In Fig. 7, we plot the evolution of the objective functions after
applying DQA, ASM and ADAL on the two networks depicted in Fig. 6. The evolutions
of the respective maximum residuals are shown in Fig. 8. In addition, the evolution of the
maximum residual for a larger network of 100 nodes is depicted in Fig. 9(a). We observe
that ADAL is still faster than both the ASM and DQA, albeit the gap in convergence speed
has decreased. In Fig. 9(b) we plot the evolution of the sequence φ(tk,λ k) to verify the
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Fig. 6 Two typical LNF cases considered, with N = 50 nodes. Blued dots denote source nodes, while green
dots correspond to sinks and red dots to relays. The flow ti j through arc (i, j) defines the thickness of the
corresponding drawn line. Thin lines indicate weaker links. a) For this case S = D = 5, R = 40 and the source
nodes are positioned to be as far away from the destinations as possible. b) For this case S = D = 7, R = 36
and the source nodes are only half the network diameter apart from the destinations.
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Fig. 7 Evolution of the sum of flows ∑(i, j)∈A ti j after implementation of ADAL, ASM and DQA on: a) the
case depicted in Fig. 6(a) and b) the case depicted in Fig. 6(b). The horizontal lines depict the objective
function values obtained after solving the corresponding centralized problem. Note how the ASM oscillates
between positive and negative values of the total flow, which normally should not be the case (since ti j ≥ 0).
This is caused by the fact that we have used stepsize σ = 1.9 (recall (12)) in our simulations. This choice of
σ returned the fastest convergence for ASM, even though it lead to this “counter-intuitive” behavior.

correctness of our proof. The sequence is strictly monotonically decreasing at each iteration,
as required.

A possible modification of DQA, ASM and ADAL is to implement these methods in
a “Gauss-Seidel” fashion, where the corresponding minimization steps of each method are
performed in a sequential fashion for every i= 1, . . . ,N. The convergence proofs of all meth-
ods are only valid for the “Jacobi” type implementation, where the minimization steps are
executed in parallel, however, it is interesting to compare the relative performances between
these two approaches. Towards this goal, Fig. 10 depicts the convergence results after ap-
plying the Gauss-Seidel version of DQA, ASM and ADAL on the network depicted in Fig.
6(b). Note that the respective results for the “normal” Jacobi versions of these methods are
depicted in Fig. 7(b) and Fig. 8(b). We observe that the Gauss-Seidel versions converge
faster, in terms of the number of iterations, than the Jacobi ones for all algorithms. Never-



An augmented Lagrangian Method for Distributed Optimization 21

0 50 100 150 200
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Iterations

Lo
g 

of
 M

ax
im

um
 C

on
st

ra
in

t 
Vi

ol
at

io
n

 

 

ADAL
ASM
DQA

(a)

0 20 40 60 80 100 120 140
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Iterations

Lo
g 
of
 M
ax
im
um
 C
on
st
ra
in
t 
Vi
ol
at
io
n

 

 

ADAL
ASM
DQA

(b)

Fig. 8 Evolution of the maximum residual after implementation of ADAL and ASM on: a) the case depicted
in Fig. 6(a) and b) the case depicted in Fig. 6(b).
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Fig. 9 a) Evolution of the maximum residual after implementation of ADAL, ASM and DQA on a large
network with N = 100 and S = D = 10, The sources were set half a diameter apart from the destinations. b)
Evolution of φ(tk,λ k) for ADAL applied on the aforementioned network.
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Fig. 10 Convergence results for the Gauss-Seidel type implementation of ADAL, ASM and DQA on the
network depicted in Fig. 6(b): a) Objective function convergence, and b) Constraint violation convergence.

theless, the sequential nature of the Gauss-Seidel means that in applications where parallel
computation is available, the Jacobi type implementations will converge faster in terms of
real-time computation, with the difference increasing for increasing problem sizes.
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5.3 Two-Stage Stochastic Optimization problems

Two-stage stochastic optimization problems are among the most popular optimization model
for decisions under uncertainty. Problems of this type occur frequently in applications, e.g.
investment planning problems, control of water systems or energy systems. The size of a
two-stage stochastic programming problem grows very quickly with the number of events
(scenarios) incorporated into the model and general optimization solvers may not be able
to handle problems with realistic size, which has motivated the development of decompo-
sition methods as the only effective alternative. For more information about the structure
and properties of the two-stage models we refer to [27, 29]. Decomposition approaches and
numerical methods for solving two-and multi-stage problems are discussed in [25].

We consider a two-stage stochastic problems of network capacity expansion, which is
described in [27, Example 4, p.14]. Given a network of available routes, the problem consists
in allocating proper capacities to arcs at the first stage before observing a random demand
for traffic on the network. At the second stage, a shipment plan is determined utilizing the
available network capacity so that the demand is satisfied. The problem objective is to plan
the optimal shipment routes and also allocate capacities to arcs in a cost efficient manner.

Consider a directed graph with node set N and arc set A . The capacity of each arc
a ∈ A is a first-stage decision variable designated by xa. There is a cost ca for installing a
unit of capacity on arc a.

For each pair of nodes (m,n) ∈N ×N , we observe a random demand Dmn for ship-
ments from m to n. We denote the shipment from m to n sent through arc a by ymn

a , which
is a part of the second stage decisions. The unit cost for shipments on each arc a is denoted
by qa. Our objective is to assign arc capacities in such a way that the expected total cost of
capacity expansion and future shipping cost in a period of time is minimized. For each node
i ∈N denote by A−(i) ⊆ A and A+(i) ⊆ A the sets of incoming and outgoing arcs for
this node, respectively. The second stage problem is the following multicommodity network
flow problem

min ∑
m,n∈N

∑
a∈A

qaymn
a

subject to ∑
a∈A+(i)

ymn
a − ∑

a∈A−(i)
ymn

a =


Dmn, if i = m,
−Dmn, if i = n,
0, otherwise,

(49)

∑
m,n∈N

ymn
a ≤ xa, ∀ a ∈A

ymn
a ≥ 0, ∀ a ∈A , i,m,n ∈N

Denote the optimal value of (49) as Q(x,D), where x,D are the vectors of all capacity
allocations and demands, respectively. The first stage problem has the form

min
x≥0

∑
a∈A

caxa +E [Q(x,D)] .

In [27], the size of such a model is calculated as follows. If the number of nodes is N,
the demand vector has N(N− 1) components. If each of these components has R possible
realizations, which are independent, we include K = RN(N−1) scenarios into the problem.
For each scenario, the second-stage decision has N(N−1)|A | components and the second
stage problem has N2(N− 1)+ |A | not counting the nonnegativity constraints. Therefore,
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the large scale linear programming formulation has |A |+N(N− 1)|A |RN(N−1) variables
and (N2(N−1)+ |A |)RN(N−1) constraints.

The dual decomposition methods in stochastic optimization replace the first stage de-
cision vector x by R vectors xk (one for each scenario realization) and introduce additional
constraints ensuring that the first stage decision variables do not depend on the second stage
realizations of the random demand data. We obtain the linear optimization problem

min
{xr ,yr}Rr=1

R

∑
r=1

pr

(
∑

a∈A
caxr

a + ∑
m,n∈N

∑
a∈A

qayr,mn
a

)

subject to ∑
a∈A+(i)

yr,mn
a − ∑

a∈A−(i)
yr,mn

a =


Dr,mn, if i = m,
−Dr,mn, if i = n,
0, otherwise,

(50)

∑
m,n∈N

yr,mn
a ≤ xr

a, ∀ a ∈A , r = 1, . . . ,R

yr,mn
a ≥ 0, ∀ a ∈A , i,m,n ∈N , r = 1, . . . ,R

R

∑
r=1

Arxr = 0.

where pr denotes the probability of scenario r and xr,yr ∈ R|A | denote the capacity and
flow decision vectors for scenario r. The nonanticipativity constraint ∑

R
r=1 Arxr = 0 ensures

equality among the capacity decisions of all scenarios and can be expressed in various ways,
one possibility being

xr = xs, ∀ 1≤ r < s≤ R,

or another
xr = xr+1, ∀ 1≤ r ≤ R−1. (51)

After assigning Lagrange multipliers to the nonanticipativity constraints, the problem splits
into scenario subproblems. Note that, we do not necessarily need to decompose the origi-
nal problem (50) into R subproblems in total. Instead, each subproblem can include a set
of scenarios. In [24], the formulation (51) was adopted and DQA was applied to obtain a
dual decomposition method for two- and multi-stage problems. In [23], the nonanticipativity
constrants are expressed as follows

xr =
1
R

R

∑
s=1

xs,

and the ASM method is applied for solving the two-stage problem. The decomposition
method constructed in this way is known in the area of stochastic programming as pro-
gressive hedging. We applied ADAL, ASM and DQA on a two-stage network capacity ex-
pansion problem with 50 nodes, 10 source-sink pairs and 200 demand realizations. The
sources were positioned one network diameter apart from their respective sinks, in order to
prevent trivial setups. Note that solving the LP problem (50) using CPLEX was not possible
for this setup, since we ran out of memory on a 48GB computer. The distributed algo-
rithms were implemented after we decomposed the problem into 10 subproblems, each one
involved with 20 demand realizations. The nonanticipativity constraints were of the form
xr = xr+1, ∀ 1≤ r ≤ R−1. The convergence results for the three methods are depicted in
Fig. 11. We observe that, for the problem considered here, ADAL and ASM exhibit simi-
lar behavior, with ADAL converging slightly faster to better constraint violation accuracies.
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Fig. 11 Comparative convergence results between the ADAL, ASM and DQA methods for a two-stage net-
work capacity expansion problem with 50 nodes, 10 source-sink pairs and 200 demand realizations: a) Ob-
jective value convergence and b) Maximum constraint violation.

On the other hand, DQA appears to converge faster to a reasonable value of the objective
function, but is slower to constraint violation convergence.
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