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Asymmetric Learning in Convex Games

Zifan Wang, Xinlei Yi, Yi Shen, Michael M. Zavlanos, and Karl H. Johansson

Abstract—This paper considers convex games involving mul-
tiple agents that aim to minimize their own cost functions using
locally available information. A common assumption in the study
of such games is that the agents are symmetric, meaning that
they have access to the same type of information. Here we lift
this assumption, which is often violated in practice, and instead
consider asymmetric agents; specifically, we assume some agents
have access to first-order gradient information and others have
access to the zeroth-order oracles (cost function evaluations). We
propose an asymmetric learning algorithm that combines the
agent information mechanisms. We analyze the regret and Nash
equilibrium convergence of this algorithm for convex and strongly
monotone games, respectively. Specifically, we show that our
algorithm always performs between pure first- and zeroth-order
methods, and can match the performance of these two extremes
by adjusting the number of agents with access to zeroth-order
oracles. Therefore, our algorithm incorporates the pure first-
and zeroth-order methods as special cases. We provide numerical
experiments on a market problem for both deterministic and risk-
averse games to demonstrate the performance of the proposed
algorithm.

Index Terms—Asymmetric learning, Nash equilibrium, convex
games, regret analysis

I. INTRODUCTION

Convex optimization [1]-[4] is widely applicable in various
fields such as economics, engineering, and machine learning.
Recently, convex optimization has been employed in multi-
agent games with applications in traffic routing [5] and market
optimization [6]. In these applications, agents are usually
assumed rational with the goal to minimize their own cost
functions by leveraging limited information received from the
environment, which falls into the category of convex games
(71, [8].

The performance of optimization algorithms for convex
games is typically evaluated using the notion of regret [3],
which captures the difference between agents’ sequential
actions and the achievable best actions in hindsight. An
algorithm is said to achieve no-regret learning if the regret of a
sequence of actions generated by the algorithm is sub-linear in
the total number of episodes 7', meaning that agents are able to
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eventually learn the best actions. Another important measure
of performance in convex games is that of a Nash equilibrium,
which is defined as a point at which no agent has incentive to
change its decision. Recently, there is a growing literature in
game theory focusing on designing algorithms that achieve no-
regret learning [5], [9]-[11] or Nash equilibrium convergence
[8], [12]-[19]. Common in these works is the assumption
that the agents have access to similar or symmetric type of
information. However, in many real-world settings, agents are
asymmetric, meaning that they have access to different types
or amounts of information; for instance, in financial markets,
investment banks have access to more information compared
to individual investors. Moreover, in Cournot competition,
where multiple companies aim to maximize their own profit,
certain dominant companies have the capability to observe
their competitors’ strategies while others do not have this
advantage. Information asymmetry is also evident in security
systems [20], [21], where an attacker operates in obscurity
and has the capability to observe the actions of the defender.
Conversely, the defender operates with transparency, often
without access to the attacker’s information or actions. In these
cases, the asymmetric information gives rise to asymmetric
update strategies for the agents.

To the best of our knowledge, asymmetric learning in
convex games has not been explored in the literature. Most
closely related to our study is symmetric learning in convex
games [8], [22]-[33], where authors have proposed methods
for no-regret learning and/or Nash equilibrium convergence.
Specifically, when gradient information is available, [22] de-
velops optimistic gradient methods for continuous games with
noisy gradient estimates that achieve constant regret under
multiplicative noise. Similarly, [23] proposes a first-order
gradient descent algorithm for A-coercive games with uncon-
strained continuous action sets, which attains the last-iterate
convergence to a Nash equilibrium. Assuming bandit feedback,
i.e., agents only have access to zeroth-order oracles, [8] shows
Nash equilibrium convergence for strongly monotone games,
which is a special class of convex games. The convergence
rate of the zeroth-order method in [8] is further improved in
[30] relying on the additional assumption that the Jacobian
of the gradient function is Lipschitz continuous. Common in
these works is that the agents perform symmetric updates using
the same kind of information. The methods cannot be directly
extended to asymmetric agents.

There are a few works that analyze asymmetric learning in
other classes of games with different types of asymmetry [21],
[34]-[37]. For example, [34] considers information asymmetry
in Stacklberg games, where one agent (leader) can observe the
action of the other agent (follower), and proposes a learning
method that utilizes the theory of Markov games. Subse-
quently, [35] proposes an asymmetric Q-learning algorithm
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for two-agent Markov games and discusses the existence of
Nash equilibria and convergence. In [36], Bayesian Stack-
elberg games are analyzed under double-sided information
asymmetry where the leader hides its action from the follower
and the follower holds information about its payoff private. It
is shown that the leader can improve its payoff by strategically
revealing part of the action to the follower. We note that all the
works above focus on Stackelberg games or Markov games
with two agents acting consecutively, which differ from the
convex games considered by us.

In this paper, we consider asymmetry in the form of gradient
available to the agents during the learning process. Specif-
ically, we assume that some agents have access to zeroth-
order oracles, while other agents additionally have access to
first-order gradient information. This situation may arise when
some agents can observe other agents’ actions and thus can
compute the first-order gradient while the remaining agents
have only access to cost function evaluations at each episode.
Asymmetry also arises in stochastic games involving both risk-
neutral and risk-averse agents. When Conditional Value at Risk
(CVaR) is used as a risk measure, the CVaR gradient can rarely
be explicitly derived even if the form of the stochastic cost
function is known [38]. The risk-averse agents cannot easily
have access to gradient information unlike the risk-neutral
agents.

Our main contributions are summarized as follows.

1) We develop a novel framework that relies on asymmetric
information to learn optimal actions in convex games. In
this framework, agents belong to two distinct groups:
agents that only have access to zeroth-order oracles
and update their actions using zeroth-order optimization
techniques, and agents that have access to first-order gra-
dient information and update their actions accordingly.

2) While the asymmetric setting complicates the system
dynamics, we theoretically show that no-regret learning
is achieved for every agent for convex games, and last-
iterate Nash equilibrium convergence is guaranteed for
strongly monotone games. We show that the perfor-
mance of the proposed asymmetric learning algorithm
lies between the pure first- and zeroth-order methods.

3) Experimentally, we validate our algorithm on online
markets, specifically, a deterministic and a risk-averse
Cournot game. In the latter case, the cost of each agent is
stochastic and agents may be risk-neutral or risk-averse
to avoid catastrophically high costs. We show that when
there are risk-neutral agents, our asymmetric learning
algorithm converges faster compared to the pure zeroth-
order method in [6].

To the best of our knowledge, this is the first paper to
address asymmetric agent updates in convex games with
theoretical results on regret analysis and Nash equilibrium
convergence. Perhaps closest to the method proposed here
is the one in [39], which addresses a distributed consensus
optimization problem where the agents perform either Newton-
or gradient-type updates. Linear convergence is shown for
strongly convex objective functions regardless of updates. We
note that the games considered here are different than the

consensus optimization problems in [39], as is also the type
of asymmetric information. As a result, the techniques in [39]
cannot be applied to analyze the asymmetric games considered
here.

The rest of this paper is organized as follows. In Section II,
we formally define asymmetric games and provide some basic
notation. The asymmetric learning algorithm is proposed in
Section III. In Section IV, we analyze regret of the algo-
rithm for convex games. Section V provides Nash equilibrium
convergence analysis for strongly monotone games of the
asymmetric algorithm. Section VI experimentally illustrates
the algorithm in the application to deterministic and risk-averse
Cournot games. Finally, we conclude the paper in Section VII.
The detailed proofs of the results presented in this paper can
be found in the arXiv paper [40].

II. PROBLEM DEFINITION

Consider a repeated game with N non-cooperative agents,
whose goals are to learn the best actions that minimize their
own cost functions. Let NV = {1,2,..., N} denote the set
of agent indices. For each agent i € A/, the cost function
is Ci(xs,xz—;) + X = R, where z; € X is the action of
agent ¢ and x_; the actions of all agents except for agent
i. The joint action space is defined as X = II}Y | X;, where
X; C R, d > 0, is a convex set. We write = := (21,...,2y)
as the collection of all agents’ actions. Throughout this paper,
we use the notation (z,y) to denote the concatenated vector
[T, yt]T

The goal of each agent 7 is to minimize its individual cost
function, i.e.,

mlernEI%}ze Ci(zi,x_;). (D
The game (1) is defined as a convex game when each agent’s
cost function is convex in its individual action. We consider
the following class of convex games.

Assumption 1. For each agent i € N, C;(x;,x_;) is convex
inx; forall x_; € X_;, where X_; = HéV:Lj#Xj. Moreover,
we assume that X; contains the ball with radius r centered at
the origin and has a bounded diameter D > 0, for all i € N.

Assumption 1 is common in the literature, see, e.g., [30].
As shown in [41], there always exists at least one Nash
equilibrium in a convex game (1). We denote by z* such a
Nash equilibrium. By definition, we have that

Cl(l‘*) < Ci(xi,x*_i), for all z; € Xj;,i € N.

At a Nash equilibrium point, no agent can reduce its own
cost by unilaterally changing its individual action. Since
every agent’s cost function is convex in its own action, the
Nash equilibrium can be characterized using the first-order
optimality condition

(ViCi(z*),m; — ) >0, forallz; € X;, i € N,

where we write V,;C;(z) instead of V,,C;(z) for the ease of
notation and the symbol V,, means taking the gradient with
respect to x;.
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We consider the case when agents have access to asym-
metric information. Specifically, there are N, > 0 agents
that only have access to zeroth-order oracles, and N — N,
agents that have access to first-order gradient information. We
index the agents that only have access to zeroth-order oracles
by i,, where i, € N, := {1,...,N,}, and the agents that
have access to first-order gradient information by 4y, where
if € Ny :={N,+1,...,N}. When N, = 0, we denote
N, = 0, and when N, = N, N; = (. Let the vectors
z; = (21,...,2n,) and x5 = (TN, 41,...,2N) represent
the action profiles of agents that have access to zeroth-
order oracles and first-order gradient information, respectively.
Finally, we use the notation —¢, to represent all agents that
have access to zeroth-order oracles except for the agent 7.

We make the following assumptions on the game (1).

Assumption 2. For each agenti € N and x € X, there exists
U > 0 such that |C;(z)| < U.

Assumption 3. For each agent i € N, there exists Ly > 0
such that C;(x) is Lo-Lipschitz continuous in x, ie.,

Ci(x) = Ci(y)| < Lo ||z —yll, Yo,y € X.

Assumption 4. For each agent i € N, there exists Ly > 0
such that V;C;(x) is Li-Lipschitz continuous in z, i.e.,

[ViCi(z) = ViCi(y)|| < L1 |z — yl|, Yo,y € X.

These assumptions are common in the literature and hold
in many applications, e.g., Cournot games and Kelly Auctions
[81, [29], [42].

Convergence analysis for games with multiple Nash equi-
libria is in general hard. For this reason, recent research has
focused on the so-called strongly monotone games, which are
shown in [41] to admit a unique Nash equilibrium. The game
(1) is said to be m-strongly monotone with m > 0, if for all
z, 2’ € X it satisfies

N
Z(Vz‘ci($) — ViCi(2"), x; — a5) > m o — a|

i=1

e

For convex games, the ability of agents to efficiently learn
their optimal actions can be quantified using the notion of
regret, which captures the difference between the agents’
sequential actions and the achievable best actions in hindsight.
Given the sequences of actions {z;,}7_,,i = 1,..., N, the
regret of agent ¢ is defined as

T T
Ri(T) = Zci(xi,hx—i,t) — min Ci(xi,x_it). (3)
=1

z; €EX; -

An algorithm is said to be no-regret if the regret of each agent
is sub-linear in 7T'.

Our goal is to design an asymmetric learning algorithm to
solve the game (1), when the zeroth-order agents i, € N,
and the first-order agents iy € Ny update their actions using
the specific type information available to them. We aim to
show that the proposed algorithm achieves no-regret learning
and Nash equilibrium convergence for convex and strongly
monotone games, respectively.

Algorithm 1: Asymmetric learning

1: Input: Initial value x;, positive sequences 7y ¢, ..t O¢,
parameters N,, N, T.

2: for episode t =1,...,T do

3:  Agents play their actions:

4. foragenti=1,...,N do

Agent i, € N, samples u;, ; € S and plays

it = Ti, ¢+ Oely, ¢

6 Agent iy € Ny plays z;, ;

7. end for

8

9

4

Agents receive information:
: foragenti=1,...,N do
10: Agent i, € N, obtains C;_(Z,,xf¢)
11: Agent iy € Ny obtains V; .C;i (x5, 22)
12:  end for
13:  Agents perform updates:
14:  for agent:=1,...,N do

15: Agent i, € N, updates according to (4)
16: Agent iy € Ny updates according to (6)
17:  end for

18: end for

19: Output: {z;}.

III. AN ASYMMETRIC LEARNING ALGORITHM

In this section, we propose an asymmetric learning algo-
rithm that allows the agents to update their actions using
first-order or zeroth-order gradient information, whichever is
available to them.

By saying that agent ¢ has access to the first-order gradient
information, we mean that agent ¢ can compute the gradient
V,C;. If agent i only has access to zeroth-order oracle, then the
available information for agent ¢ is its function evaluation C;.
We assume that agents are rational and always use first-order
gradient information to update their actions when available,
while those with only zeroth-order gradient information use
this information for updating.

The detailed algorithm is presented as Algorithm 1. At
each episode t, each agent i, € N, that has access to a
zeroth-order oracle perturbs its action by an amount of §;u;_ ¢
and plays the perturbed action Z;_; = x;_: + 0tu,_ ¢, Where
u;, ¢ € S is a random perturbation direction sampled from a
unit sphere S C R? and §; is the size of this perturbation.
In contrast, each agent iy € N with first-order gradient
information plays the action z;, ;. Here we collect the actions
of all agents that have access to zeroth-order oracles in a
vector &, ¢ := (£1,4,.-.,2n,,), and the actions of all agents
that have access to first-order gradient information in a vector
x5t = (TN.4+1,4,---,Zn,). After all agents have played
their actions, they receive their own asymmetric information.
Specifically, given the played action profile (&, ¢,z ) at time
step t, each agent ¢, obtains the returned function evaluation
Ci. (.4, xy,), while each agent iy gets the first-order gradient
information V;,C;, (s, %.¢). Then, each agent i, performs
the following projected update

Ti, 41 < Pyo (ib”iz,t — nz,tgiz,t)a €]
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where the step size 7, ; of agents with zeroth-order oracles
will be designed later. The zeroth-order gradient estimate is
constructed as

d, ..
Gi b = (Tciz (Zaty T ) Ui, ¢ )
t
The projection set is defined as sz‘ = {z;, €
Xiz|ﬁxiz € X,;_}. The projection step guarantees the
feasibility of the sampled action &;_ ¢, since

(1 - ‘%)Xh ©6S
- (15t>;qz@5 S
T
(1 _ 575);(12 ® 5% — X,
T

Here, @ denotes the Minkowski sum of two sets. Each agent
1y performs the action update

N

(6)

where 7y ; is the step size of agents with first-order gradient
information and will be designed later.

In our framework, each agent i, € N, with no access to
first-order gradient information plays a randomly perturbed
action &;_;, as in standard zeroth-order optimization [43].
Then, the agents with access to the first-order gradients obtain
gradient information at the random point (z,Z, ) rather
than (x4, 2. ). In other words, agents with access to zeroth-
order oracles add randomness to the action updates of agents
with first-order gradient information. This randomness does
not exist in the pure first-order method where all agents obtain
gradient information at a deterministic point ;. Consequently,
such asymmetric updates lead to more complex agent interac-
tions.

Although Algorithm 1 may appear to be a combination
of the pure first- and zeroth-order methods, the analysis of
these two methods cannot be directly applied to our algorithm.
On one hand, as stated above, the presence of agents with
zeroth-order oracles introduces extra randomness to the action
updates of agents with first-order gradient information, thereby
increasing the whole system’s complexity. On the other hand,
agents with first-order oracles introduce discoordination for the
whole system. Specifically, the dynamics of first-order agents
directly affect the cost function values, thereby affecting the
gradient estimates for agents with zeroth-order oracles. Conse-
quently, the constructed gradient estimates become biased of
the smoothed functions in pure zeroth-order case, rendering
traditional zeroth-order techniques inapplicable here.

l'if,t{—l <~ P-Xif (xif,t - nf,tvifcif (xf,tai'z,t))a

IV. CONVERGENCE RESULTS FOR CONVEX GAMES

In this section, we analyze the convergence of Algorithm 1
given that the game (1) is convex.

The standard smoothed functions commonly used in an-
alyzing pure zeroth-order methods rely on the premise that
all agents obtain gradient estimates based on zeroth-order
optimization techniques. However, the presence of agents
with first-order gradient information in our asymmetric game

renders the premise invalid, making these smooth functions
unsuitable for our analysis. To solve this problem, we construct
new smoothed functions tailored for such asymmetric games.
Specifically, we define C;, (z,) = C; (x,,xs;) and the
smoothed function C?j,t(fﬂz) = Buw,, ~Byu_i_ ~s_;, Ci, t(xi, +
dtw;_,x_;, + du_;, ) which serves as an approximation of
Ci, 1(z;). Here, B, S denote the unit ball and unit sphere in
RY, respectively, and S_;. = H;V;f 'S. The smoothed cost
function in symmetric games [8] is smoothed over actions of
all agents, while our smoothed cost function is only smoothed
over actions of zeroth-order agents. This modification lays the
foundation for our subsequent analysis. When all agents use
zeroth-order optimization, the smoothed function reduces to
the one in [8]. It can be shown that the function sz"t(arz) has
the following properties [40].

Lemma 1. Letr Assumptions 1 and 3 hold. Then, we have that
forallt>1

1) C‘st (x,) is convex in x;;
2) CZ t(mz) is Lo-Lipschitz continuous in x,;

3) 1] (@) = Cioa @2)] < 6iLoVN:
9 E[£C0u(0m.] = ViCl (o)

The smoothed function C !+ 1s defined as a time-varying
cost function of the actions of all agents that have access to
zeroth-order oracles. Despite its time-varying nature Lemma 1
shows that some properties of the function C ! ¢ still hold for
any Ty ;. Note that the last property in Lemrna 1 shows that
the term 5 C% (Z,)u,, is an unbiased estimate of the gradient
of the smoothed function Ci’t(xz)

We use the notion of regret to measure the performance of
our algorithm. Given a sequence of agent actions {&;_;}7 ;,
i € N, and {z;, ;}{_,, iy € Ny generated by Algorithm 1,
(3) yields the regret of agent i, € N, as

T
R, (T) = E[ZCZ (@0, 10)
t=1
T
N winel‘;lélz Z Ciz (xiz ’ 'jf—iz.,t; xf’t)} ’
t=1
and agent iy € Ny as
T
Rif (T) :EI:ZC” (xf,t;jjz,t)
t=1
T
- rnel‘% le(xlfax ’Lf t,l‘z t>:|

=1

We note that the definition of regret depends on actions
of other agents, and the asymmetric updates of other agents
make regret analysis more complex. By appropriately selecting
the parameters 7y, 7, and J;, we show that Algorithm 1
achieves sub-linear regret. The formal result is presented in the
following theorem, in which the notion O hides all constant
factors except for N, N, and T'. Due to space limitations, the
detailed proof is provided in [40].
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Theorem 1. Let Assumptions 1-3 hold, and select 0y =
m, Nzt = W, Net = ﬁ, for all t > 1. Then,
for any T > 1, Algorithm 1 achieves regrets

R, (T) =0 (Nzl/4T3/4>  Vi. € N
R, (T) = O (T1/2) , Vis € Ny. (7)

The design of the positive sequences 7, ¢, 177+ and J; does
not require the knowledge of the total number of episodes 7T'.
Using these sequences, Theorem 1 shows that Algorithm 1
achieves sub-linear regret for all agents, although agents that
have access to first-order gradient information have a smaller
regret bound in terms of 7' compared to agents accessing
zeroth-order oracles.

Using similar techniques as in [3], one can show that the
pure first-order method achieves a regret of O (T/2) while the
pure zeroth-order method achieves a regret of O (N 143/ 4).
We observe that the regret for agents with first-order gradient
information is not affected by the asymmetric setting. This
is due to the facts that other agents’ varying actions can
be deemed as a source of varying cost functions and first-
order gradient descent update is no-regret under varying cost
functions. However, the agents with zeroth-order oracles are
affected by this discoordination induced by the asymmetric
setting. Specifically, the dynamics of the first-order agents
directly affect the cost function values, thereby affecting the
zeroth-order gradient estimates. Despite this, we show that the
constructed gradient estimate is an unbiased estimate of the
gradient of the newly constructed smooth function, and the
regret bound of zeroth-order agents achieved by Algorithm 1
is always better than that achieved by the pure zeroth-order
method. Therefore, Algorithm 1 not only ensures that the
agents accessing first-order gradient information inherit the
lower regret bound O (Tl/ 2) of the pure first-order method,
but also improves the regret bound of the agents accessing
zeroth-order oracles, compared to the regret achieved by the
pure zeroth-order method. Let the total regret denote the
sum of every agent’s regret, which we denote by R =
Doien, Ri. + Zifej\f R;,. The total regret achieved by
Algorithm 1 is lower éounded by that of the pure zeroth-
order method and upper bounded by that of the pure first-order
method.

V. CONVERGENCE RESULTS FOR STRONGLY MONOTONE
GAMES

In this section, we analyze Nash equilibrium convergence
given that the game (1) is strongly monotone. It is well-known
that the Nash equilibrium is unique in strongly monotone
games [41], which we denote by z*. In what follows, we
provide the last-iterate Nash equilibrium convergence result
for Algorithm 1.

Theorem 2. Suppose that the game (1) is m-strongly n;lono-
1/6

tone. Let Assumptions 1-4 hold, and select §; = % ,

Mat = Nft = %, forallt = 1,...,T. Then, Algorithm 1
satisfies

E |lor — 2"

- O(N§/3N2/3T—1/3 +(N - NZ)T‘l). )

Proof Sketch: We analyze the convergence to the Nash equi-
librium by separately examining the error dynamics for first-
and zeroth-order agents and then combining these analyses
together. Specifically, for first-order agents, er study the
‘ leveraging

evolution of the squared error ‘ixi FAl — xjff
the corresponding update rule (6). For zeroth-order agents,
due to the varying parameters of d; in the smoothed func-
tion for zeroth-order agents, we first analyze the evolution
of ||x,-z7t+1 —Jifz’tH leveraging the update rule (4), where

! (1-— ‘%):c;l. Then, we analyze ||z, 441 — @ || by

Tip =
establishing a bound on ||x2‘z — :zzfz’tH%

Although the dynamics of the two agent types are intercon-
nected, we can bound the influence of one agent type on the
other by leveraging the properties established in Lemma 1.
Next, we combine the dynamics of all agents to analyze the
behavior at the group level, i.e., the convergence toward the
Nash equilibrium. By applying the strong monotonicity con-
dition, we characterize the evolution of the Nash equilibrium
error, quantified by ||z; — 2*||*. Finally, we prove convergence
using induction. ]

Theorem 2 shows that Algorithm 1 achieves the last-iterate
Nash equilibrium convergence for strongly monotone games
with diminishing smoothing parameters J; and diminishing
step sizes 7y; and 7.;. Note that the design of dimin-
ishing parameters does not require the information of the
total number of episodes T'. Moreover, under Assumption 3,
Nash equilibrium convergence implies sub-linear regret for
each agent since the regret is upper bounded by the sum of
differences between their actions and Nash equilibrium.

When N, = 0, meaning that all agents use the first-
order gradient-descent update, the convergence rate O(NT 1)
matches the result of learning in strongly monotone games
with stochastic gradient information [44]. In the other extreme
case N, = N, i.e., all agents have only access to zeroth-
order oracles, the term (N — N,)T~! disappears and the
convergence rate O(N*/3T~1/3) matches the result of zeroth-
order learning in games [8]. We observe that the convergence
rate of Algorithm 1 lies between those of first- and zeroth-
order methods. It is worth noting that the convergence rate
of O(T~'/3) for zeroth-order optimization in games is sub-
optimal, as indicated in [42]. Therefore, there is potential to
improve the convergence rate in (8). However, achieving this
in the asymmetric setting is challenging, and we leave it for
future work.

To end this section, we would like to briefly explain the
challenges in the proof of Theorem 2. Algorithm 1 is a com-
bination of the pure first- and zeroth-order methods. However,
the Nash equilibrium convergence analysis of Algorithm 1
cannot be obtained by directly combining the results of these
two pure methods, since the dynamics of the two groups of
agents, i.e., agents with first-order gradient information and
zeroth-order oracles, are coupled together. On the one hand,
agents with access to zeroth-order oracles spread their random-
ness to the dynamics of the agents with first-order gradient
information. On the other hand, the presence of first-order
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agents slightly disrupt the coordination among those agents
with zeroth-order oracles aiming to minimize the smoothed
cost function. This coupled dynamics, combined with the
setting of diminishing parameters, complicates the analysis of
Nash equilibrium convergence of the whole system.

VI. NUMERICAL EXPERIMENTS

In this section we use a Cournot game to illustrate the
performance of Algorithm 1. Consider a market problem with
N agents. Suppose that each agent ¢ supplies the market with
quantity x; and the total supply of all agents decides the price
of the goods in the market. Given the price, each agent ¢ has
the cost C;(z). Each agent aims to minimize its own cost
through repeated learning in the game. In what follows, we
consider two cases, a deterministic game and a stochastic game
with risk-averse agents.

A. Deterministic Cournot Game
Consider a market with NV = 10 agents. The cost function
of each agent is given by

Ci(x) = x4(

a;x;
121 erlzxﬂ —ei)+1,
J#i
where a; > 0, b;, e; are constant parameters. It is easy to
verify that

ViCi(x) = a;z; + bjx_; — e;.

The parameters are selected as
a=1[2,2,15,1.8,2,1.8,2,1.4,1.8,2],
b=10.2,0.3,0.3,0.2,0.3,0.2,0.3,0.2,0.3,0.3],
e=1[1.8,19,1.51.6,1.8,1.3,1.2,1.5,1.8,1.6].

It can be verified that the game is m-strongly monotone with
m = 1.284, and the Nash equilibrium is

z* = [0.57,0.44,0.29,0.52,0.38,0.33,0.026, 0.61, 0.43, 0.26].

The projection set is defined as X; = [0, 3].

We run Algorithm 1 with different values of N, as well
as the pure first- and zeroth-order methods. We choose the
step sizes 1y = 1. = %% and the parameter §; = %2,
Fig. 1 illustrates the convergence rate of these algorithms. We
observe that our asymmetric learning algorithm with different
values of IV, always performs worse than the pure first-order
method but better than the pure zeroth-order method, which
agrees with Theorem 2. Besides, a larger value of V,, which
means that fewer agents have access to first-order gradient
information, leads to a slower convergence rate; when IV,
approaches NV, the convergence rate is similar to that of the
pure zeroth-order method.

Fig. 2 illustrates the error between the action x; and the
corresponding Nash equilibrium 2] for every agent i. We
term the agents with access to first-order gradient information
and zeroth-order oracles as first-order agents and zeroth-order
agents, respectively. We select N, = 5 and compute the
average error to the Nash equilibrium for first- and zeroth-
order agents. As shown in Fig. 2, first-order agents converge
faster than the zeroth-order agents. Fig. 3 plots the average

101 4 —— Algorithm 1, N, =1
Algorithm 1, N, =4
100 4 —— Algorithm 1, N, =9
— FO
10-1 Z0
e
| 1072
x
1073
1074
107°
0 500 1000 1500 2000 2500 3000
episode

Fig. 1. Nash equilibrium convergence achieved by the pure first-order method
(FO) and the pure zeroth-order method (ZO), and our asymmetric learning
algorithm with different values of V.. The solid lines and shades are averages
and standard deviations over 50 runs.

100 4 —— Zeroth-order agents
First-order agents

1071 o

1072 o

[1xi = x; 117

1073 o

1074 o

1500 2000 2500 3000

episode

0 500 1000

Fig. 2. Average error to Nash equilibrium point of first-order agents and
zeroth-order agents achieved by Algorithm 1 when N, = 5. The solid lines
and shades are averages and standard deviations over 50 runs.

regret over 50 runs for first-order agents and zeroth-order
agents. We observe that agents that use first-order gradient
have much smaller regret than the agents with zeroth-order
oracles, which aligns with our theoretical result.

B. Risk-averse Cournot Game

Consider a market with two agents, i.e., N = 2. Each agent
decides the quantity z;, ¢ = 1, 2. The stochastic cost of each
agent is defined by J;(z) = —(2 — 25:1 zj)x; + 0.22; +
&x; + 1, where &; is a random variable used to represent the
uncertainty in the market. Agents aim to minimize the risk
of incurring high costs, i.e., agents are risk-averse. We use
CVaR as the risk measure and denote the risk level of each
agent ¢ by «. It is well known that the CVaR value represents
the average of the worst «; percent of the stochastic cost,
and when a; = 1, it is equivalent to the risk-neutral case.
Let agent 1 select the risk level oy = 0.5 while agent 2 is
risk-neutral, i.e., as = 1. The objective functions of these
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—m— Zeroth-order agent
First-order agent . -
= — \l\./.' —n
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T

Fig. 3. Regret Zthl Ci(xt) —ming, e x; Z;T:l Ci(xi, x—4,¢) of first-order
agents and zeroth-order agents achieved by Algorithm 1 when N, = 5. The
solid lines and shades are averages and standard deviations over 50 runs.

number of samples n;

4000 6000 8000 10000

episode

0 2000

Fig. 4. The number of samples of Algorithm 1 and the pure zeroth-order
method (Algorithm 1 in [6]).

two agents are Ci(z) := CVaRy, [Ji(x,&1)] and Ca(x) =
E[J2(x, &2)], respectively, where the definition of CVaR can
be found in [6].

The gradient of the CVaR function is hard to compute in
most cases even when the function Ji(x,&;) is completely
known [41]. We assume that given the played action profile
z, the risk-averse agent does not have access to gradient
information but only to the cost evaluation J; (x, & ). The risk-
neutral agent has access to gradient information V3Cs(x).

Since the CVaR value cannot be estimated from only one
sample, we use the sampling strategy proposed in [6] that uses
a decreasing number of samples with respect to the number of
iterations. The number of samples n; chosen here is shown in
Fig. 4. With this sampling strategy, the agents have n; samples
at episode t to estimate the CVaR values.

Let & ~ U(0,0.4) be a uniform random variable. Then,
we can obtain an explicit expression of the cost function
Ci1(x). Further, using the first-order optimality condition we
can compute the Nash equilibrium to be (0.4667,0.5667).
We run Algorithm 1 and the pure zeroth-order algorithm

—— Algorithm 1
Z0

1071
e
l
>
=102

1073

0 2000 4000 6000 8000 10000
episode

Fig. 5. Error to Nash equilibrium point achieved by Algorithm 1 and the pure
zeroth-order method (ZO) in risk-averse games. The solid lines and shades
are averages and standard deviations over 50 runs.

(Algorithm 1 in [6]), and select the step size 7, = 29°% and

the parameter § = % for both algorithms. Fig. 5 shows that
our asymmetric learning algorithm converges faster than the
pure zeroth-order method.

VII. CONCLUSION

In this work, we proposed an asymmetric learning algorithm
for convex games in which the agents update their actions
using either first-order gradient information or zeroth-order
oracles. We showed that our algorithm achieves sub-linear
regret for convex games and last-iterate Nash equilibrium
convergence for the class of strongly monotone games. Our
theoretical analysis further established that the performance
of the proposed algorithm consistently lies between those
of the pure first-order and zeroth-order methods. This result
highlights the algorithm’s flexibility, as it can interpolate
between these two extremes by varying the number of agents
with access to gradient or oracle information. In particular,
our algorithm recovers both the pure first-order and pure
zeroth-order methods as special cases. We demonstrated the
effectiveness of our algorithm through numerical experiments
on deterministic and stochastic risk-averse Cournot games.
These simulations illustrate the adaptability of the algorithm
in handling heterogeneous agent information structures.

Several promising directions emerge for future research.
One avenue is the development of a generalized theoretical
framework to systematically study asymmetric learning algo-
rithms that enable agents to employ multiple strategies si-
multaneously. Another intriguing direction involves exploring
the fairness in such asymmetric settings. Besides, extending
our analysis to more complex game structures, such as non-
convex or hierarchical games, and studying the implications
on equilibrium computation and convergence rates would also
be interesting.
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APPENDIX
A. Proof of Lemma 1

1) Since the function C;(x) is convex in z; for any fixed
w(xy) = sz (x5, x4) is convex in ;.
and 0 € [0,1], we have
that C;_ .(0p1 + (1 — @)pa, x_;, ) < 0C;, 1(p1,x—i,) + (1 —

x_;, we have that C;,
Therefore, for any pl,pg € X

0)C;, +(p2,z_;,). Based on this, it gives that

C (Op1+ (1= 0)pa,a_;.)
=E[Ci. +(0p1 + (1 — O)p2 + dpw;,, z—;_ + Su_;,)]
= E[Ciz,t(e(pl + 0w, ) + (1 — 0)(p2 + dew;_),

T i+ 0u.)]
< E[0C;. +(p1 + Sewi_, x—;, + Spu_;,)

+ (1= 0)Ci. (P2 + Srwi, i + Sru—.)]
=0C)" (pr,2—i.) + (1= 0)C" ((p2,2—s.),

where the expectations above are taken with respect to w;, ~
B and u_;, ~ S_;,. The proof is complete.

2) Since the function C;(x) is Lo-Lipschitz continuous in x,
we have that C;_ (x,) is Lo-Lipschitz continuous in x,. Thus,
for arbitrary two points x,,z,, € X, with X, = ngleiz, we
have that

C (x2) — C ()

= | E c:

Tz
'LuiZNIB,u_,;z NS—iz

t(@i, + 0pwi,, x i, + Opu_;,)

- Ciz )t (‘T;z + 5twiz ) x/,iz + 5tu7iz )]
= E [Lo 2= — 22|

iz

wiZNIB,u,iZN —i

< Lo|lx, - xle .

The proof is complete.
3) From the definition of C;,_ 4, it directly follows that

¢ (x2) = Ci4(x2)
~Ci_a(e.)]|
< E Lo [|(6swi, 0gu—q, )|

wiz NIB,u_,;z ~S

< Lobi\/ N».

4) The proof of this claim can be directly adapted from
Lemma C.1 in [8] and thus omitted.

—iy

B. Proof of Theorem 1

We first focus on the regret analysis of agents with first-
order gradient information. As a reminder, we use iy to
index an agent with access to first-order gradient information
and 7, to index an agent using zeroth-order oracles. Define

. T .
y:‘f = argming. . Yo, Cif(xif,x_iht,xz,t). From the
update rule (6), we have that
2
*
‘ Tigt+1 — Yi, ’

9
R 2
= HPX"T (mf,t - Uf,tvifcz'f (xf,taxz,t)> - yff ‘
2
S ’ x’if,t - nf,tvifcif ((Ef,h:%z,t) - y;kj
* 2 2 - 2

< ’ Tig,t — Y, ‘ + N5 ||Vz‘fcz'f (JTf,t,J?z,t)H

- 277f,t <Vifcif (xf,h'%zﬁ)a'rif,t - yz*f> 9 (9)

where the first inequality is due to the facts that PXif (yi,) =
y;‘f and the projection operator is non-expansive. From the
convexity of the function C;, () in x;,, we have that

T T
Rif(T) :E{chf xftaxzt Zczf yz}”x if tvxzt)}
t=1 t=1

(3 (90 )y — i, )]

<E
t=1
T
1 2 L2
o I B Y e By
t=1 ’
+7]f tE Hvlfclf(xf ty Lzt || )
d 201 L3
NgtLo
S e
; £t~ Yi, 25 anf R ;
T
<Dy (R Z 77ftLo
2 3 nf’t Nf.t-1 t=1
77ftL0
< +
277fT ;
T
< g(ﬁ + 2L3),
where —1— := 0. The second inequality follows from (9) and

nf,0
the last inequality follows since ny; = % and Z;‘ll % <

2v/T. The third inequality holds since, for any two sequences
{at}tT:l, {bt}tT:p with % =0,a; >0, by > o,vt=1,...,T,
we have

T
1 1 1 br
E — bf*bt+1 E bt(a—tf—)f

+1
=1 =1 at—1 ar

e

1 1
bi(— —

Q¢ at—1

B

).

o
Il

1

The proof for the agents with first-order gradient information
is complete.

Next we turn to the regret analysis of
the  agents with  zeroth- order oracles. Define
i = argming, cy, Zt 1Ci (24,2 Zz t,Tfe) and

yfz’ = (1- 5f) Slnce yi. € X, we have y X‘S‘

By virtue of the update rule (4), we have that

5
= HPX;M (xiz,t - Uz,tgiz,t) - yz:

2

s 2
Ti, 41— Y]

2

<]

5
Tit — NztGist — Yi

z
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2 9 9
< + 0% 1giz el

St
Tit—Y;,
—2nz <$iz,t

where the first inequality is due to the fact that P P (yZ ) =

— 9l g ) (10)

‘. Taking expectations of both sides on the 1nequa11ty (10),
we obtain that

2 2 n?,d*U?
E ‘ Ti, 441 — yfzt ‘ < ]E‘ Ti, ¢ — yit + 1572
b
22 E (210 — 4, ViCl y(@20) ), (D)

where the inequality follows from Assumption 2 and the fact
that ||g;. +|| = sz (ZatyTpe)Ui, ¢ H < %. Then, we have
that

T
Riz(T) :E{ZCH xzt,l‘ft
t=1

== (G

t=1

T
Z Clz yzz x—lz,t7 xf t)]
t=1

—Ci (Yl Toise) = Ci,p(22t)
- Ci(20) = Cooa (7 0 i) + Cina 7-i20) )|

(Ciz,t(xz,t) —Ci (Yl x—i. ) +2Lod; \/ﬁz)}

=

<E

t=1

T
SB[ (€ () = CF (070 5i0) + ALodi /N )

Ct=1

t=
T
= B[ 3 (€0 (a) = C (i i) + (i)
Tt=1

- Cfit(yl T i, t) + 4L/ Nz)]
T
<E[ 3 (€ () = € oyt w i) +
t=1

+ 4L05tm)]

E <$iz,t — yfj7vichz,t(xz,t)>

Loé:D
r

[M]=

<

t=1

D T
o(— +4v/N2) Y4,
t=1

The first inequality follows from Assumption 3 and the second
inequality follows from the third item in Lemma 1. The third
inequality holds because

(12)

Ot ) & Loo D
€8 (02— ) =€l i i )| < Lo [Jyi ]| < =20
The last inequality 1n (12) follows from the first item in
Lemma 1. Define —— = 0. Substituting the inequality (11)
into the inequality (12) we have that

Ri. (T)
T
1 2 2
< (E‘l‘iz.t—yft _E‘xiz,t—&-l_y?t )
N,:d-U D
Lo(— 4+ 4/ N, )
+3 a5 +Lo( +4v ) 6

T 1 6 2
=3 gy (Bl =t Bl -
212 =t z’ :
t=1
5 2
+]E‘$zz,t+1*yz *E‘Iiz,wl*%: )
T T
L1 d2U?
D S LNCING 2D 3
t=1 t t=1
T
1 2 1 1
< - E‘xi ?t —
2; =t yz (nzt nz,t 1
A
(S 1 5 1
+D 5 E[(z/;* — Yy _2xzz,t+1>:|
=1 nz,t
T ns 1d2U T
+>° z,t%z +Lo(= +4VN.) D o
t=1 t t=1
D? ., d2U? D a
< Lo(— +4v/N, 1)
_202’T+; 207 + 0(r + F); t
KA
5
r3 gl -t
t=1 277”
n td2U2 d
z L 4~/ N, 1)
_27]2T Z oz o5+ ‘/j); !
T
(51‘ 5t+1)
+
=1 7q"7zt
12.1d2U? T
z Lo( 4
>~ QT]ZT tz; 252 + 0 + \/7 g t
D & 1 1
+725t( - ) (13)
T =1 Nzt Nz t—1

In the second and last inequahtles we use again the trick

that Zt 13 (bf —by1) < Zt lbt(— - at:) for any
two sequences {a;}1., and {b,}1_; with % =0, a >
0,b; > 0,¥t = [1,T]. The fourth inequality holds since
’yi“’l fyi‘ = (6t+1:,6t)yiz < (5“6;“)[). Substituting
N2t = —1— and 0 = f - into the inequality (13), we
Nita Nitz
have
R (T)
1.
DANATS Lo +4VN.) & 1 d2U% 1
ST/t T Dot
N =1 t1 t=1
D21, 5
+ — —(t1 —(t—1)2
T2t ==Y
t=1
1
D2NFT%  Lo(2 +4\/ 1 d2U2 InT
< 9 + ZT
=1 t1
D? ET: 1
roti
1 E
D2NAT% +4L0( + 4N ) +d2U21nT
- 2 3N4 2
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4D?
7T*
T3

1.3
—o(niT?),
where the last inequality follows from the fact that
SSEt7% <14 [/t 5dt < 4T3, The second inequality
holds since f(t) :=t3 — (t —1)3 < 1 for all ¢ > 1, which is
easily verified through computing the derivative of f(¢). The
proof is complete.

C. Proof of Theorem 2

To clarify the notations, we define the following:

JZ* - (l’zﬁ}): xz = (QI‘T,Z‘;, te 7x*Nz)7
x} = (x7Vz+1’xN +250 ’1'7\1)5 Ty = (xz,hxﬁt)?
Tzt = (Il,t, <IN, At), Tft = (ZUN RN NIRRE ,HUN,t)7
Ot
x;&k :(xz,tax?)v zt*(lf?) za
* |12 * 2
Aiz,t L= ||'I’L'z,t - xzzH ) Aif,t = ‘ zif,t - l‘if ‘ 9
—_ 2 /\
A= Hwiz,t — e 1H |
Apr= Z Aie+ Z Aiga = llze = 2"|%,
i,=1 ip=N_+1
N
At :ZA t+ Z A’Lf, |It7$t 1||
=1 ’Lf N,+1
N
A=) A+ Z Aipr = o — 7).
i.=1 ip=N,+1

Recall that we use iy to index an agent with access to first-
order gradient information and 7, to index an agent using
zeroth-order oracles. We first focus on the evolution of A; b
i.e., the error dynamics of the agents with first-order gradient
information. From the update rule (6), we have that

2
Aij 41 = ‘ Tip 41 — x;kf
2
= prif (xif,t —n7:Vi,Ci; (l‘f,taf?z,t)) -y, ‘
2
< ’ Tipe = NfeVipCip (Xf0, 820) — 7, ’
2 9 9
S ‘ :Eif,t - CE;} ‘ + nf’t Hvifcif(wf,twsz,t)u

— 205 <Vz'fcif (xf,t,ffz,t),xif,t - 96?1>
< Aip— 2054 <Vz’fcif($f,t,iz,t),xif,t - ffff>

+ 17415, (14)

*

where the first inequality follows since Py, ( x7,) = %f
and the projection operator is non- expanswe Since z* is
a Nash equilibrium of the convex game (1), we have that
(Vi,Cij (@), 25,0 —aj,) 20,i=1,...,N. Combining this
Nash equilibrium condition with the inequality (14), we have
that

A’if,t+1

< Ao+ 07 Lg+ 204 <Vz‘fcz‘f (%), @ip e — l’fj>
— 2054 <VifCif (gt Tzt), Tip e — m’;f>

=Ai 0 — 27}f,t<vifcif (g, 226) — Vi, Cip(24),

x:f> + n;,tL(Q)

= 20 (Vi,Cop (@) = Vi, Ciy (27) 0,0 — 7, )

— 25 <VifCif (w7) = Vi, Ci, (27), 24, ¢ — acff>

2n¢+L16:D*/N,
r

xif,t -

< Aipp + 07 Ly + 205, L1607/ N.D +

= 27,0 (Vi,Ciy (@) = Vi, Ciy (@), ig 0 — 3, ), (19)
where the last inequality follows from
Assumptions 3, 4, and the facts that
|V sz xft,xzt) ViCip ()| < Lill#zs —a.yll <
L15t N, |V ) V le(x*)H < Lyllzp —2*| =
L szt Llé,DF

Next we turn our attentlon on the evolution of Al it
Similarly, from the update equation (4), we obtain that

J— . — *
Ai 41 = szz,t+1 fiz,tH

_ . _ . _ *
—HPX;S; (xzz,t Wz,tgzz,t) Ty

2

< Hxiz,t — NztGi.t — JJZ,tH
— A 2 . 2_9 ) S ¥
- 1z,t + nz,t ||ng7t|| 7727t <g7,z,t7 m127t xlz,t>
. 02 ,d2U?
<A s+ ZT =204 (Gi. s Tt — ;). (16)
t

where the first inequality follows from the fact that
PXaf
expansive. Taking expectation of both sides of the above
inequality (16), we have that

(xf ¢) = . and the projection operator is non-

E[A;. 111]
S E[A’L'ZJ] - ZUZ,tE <Vizc7it7t($z,t)? ziz,t - x;kz,t>
n?,tngz
o7
2 2772
Nz dU
<E[A; 4]+ 7
— 277Z tE< C,L 't xz t szczz( ) x"z t xzcz;t>
— 2. B (Y C () — Cz(:c?;) i — T p)
- 2772 tE <vzzc ( ) C ( *) Ti,t — x;:,t>
— 2B (V. Ci, (¢%), xzzt—fci,t) — (zi 4 — 7))
1%, td2U2 21, +L16;D?
<E Al
[Ai. ] + 52 ,
—2n,+E <VZZCZ p (w24) = Vi, Ci, (w4), 75, ¢ — x:z,t>
—2n..E(V;.C;, (l‘t) - Vz'zciz (x7)s Tinse — T 4)
- 2772 tE <vzzczz( zz - zz t>
. d2U2 on, L 20, +LodeD
<]E[Azz,t] n nzt 0z,6L16: D + Nz,t400¢

52 r r
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— 214K <szclz (@20) = Vi.Ci (21), it — ‘T;;,t>
— 27727,51@ <ViZCiz xt) - VizCiz (-f:),xiz,t — xfz7t> , (17)
where the first inequality follows from Lemma 1, the sec-

ond inequality holds due to the Nash equilibrium first-order
optimality condition, and the third inequality follows since

IVi.Ci.(27) = Vi.Ci (z7)|| < Lu ||z —a*|| < B122. The
last inequality follows from Assumption 3 and the fact that
* (5tD
Hxiz - :Cz t <
Now we are in a position to bound the term
Since C;, is bounded

HVlZC'f t(@20) = Vi O, (xt)u/
and continuous for all i, € N,, by Lebesgue’s dominated
convergence theorem (Chapter 4 in [45]), the order of
integration and differentiation can be interchanged. Then, it
follows that

V.G (w20)

= Vi E[Ci, (i ¢ + 61wi 4, Tt + Orti—i_ )]

=B (Vi Ci, (i, ¢ + 0qwi_ 1, @i ¢ + Oru_i, 1)]

=E[Vi.Ci (@i, 1 + 0wi, 4,0

1z,

t+ Ui, Ty,

where the expectations in the above inequality are taken w.r.t
w;, ¢ ~ B and u_;, + ~ S_;_ . Then, we have that

Hvichj,t(ﬂfz,t) = V.. Ci (1)

< Ly |(wi, gy u—i. t)|| < L1den/ N.

Substituting (18) into (17), we obtain that

(18)

E[A;. t+1]
. 2.d*U%  2n,,016,D%  2n,,Lo6,D
SE[Aiz,t]-i-n’tg Nz, tL10¢ +"77t 00¢
0 r r
— 2024 B(Vi.Ci, (21) = Vi, Ci (}), @it — 27 _4)
—+ 277z,tL16t\/ NZD (19)

Define dp = 0 and z;, o = z;,. From the definition of Aiz,t

and Al +» we have

Aiz,t = HIiz,t -z

= Aiz,t —+ | X
+ 2T, 0 — ] 1T 1 — T )

|6t,1 - (5t|2D2 n 2|6¢-1 — (51t|D2

12,0 r2 r ’

*
— 1+1’1z,t 1~ Ty

| 2

‘ 2

iz,

* *
iat—1 Lt

< A; (20)

for all ¢ > 1. The inequality (20) holds at ¢ = 1 since
2} o —af 4] = 2a; < 2=2IP substituting (20) into
(19), we have
E[A;, 111]
—5.12D2 _ 2
< R[4, ]+ |01 —1 25t| D 2|5t,1 0¢|D
r r
— 20 E(V;.C; (w¢) — Vi.Ci (2]), 24, ¢
D?  2n,:Lod:D
+ Nz,t4:00¢

Zz 7t>
Ug,tdQ U? 2n. +L16;
52 r T

+ ZUZ,tLl(St\/ NZD

+

2y

Summing (15) over iy = N, +1,..., N and (21) over i, =
., N, altogether, and setting 7,; = ny; = 1 we have

that
N
E[Ai+1] = Z E zz,t+1 + Z zf t+1
i,=1 ip=N_+1
|5t_1 — 5,5|2D2 2|0p—1 — 5t|D2
< 1
Zz_l ( =t 72 + r
— 2y E <V i (T1) — vzzczz (xF), Ti L, t>
t2d2U2 QT]tLl(St 277tL05t
+ 62 r + r
i

+ 2ntL15t\/NZD>
+ Z ( i) + 17 LG + 21 L16¢\/ N.D

lf N.+1
_onE <vifcif (1) — Vi, Ci, (@), i, 1 — xjf>
n 277tL16tD2\/ Nz)

r
|6:—1 — 6| D?

N 2N, |8;—1 — 6| D?
7"2

r

= ]E[/_lt] + NZ

N
— 21 ZE <Vi0i(33t) - ViCi(xy), Tit — x:t>
i=1
240202 2mL46.D?*  2n.Lod.D
+Nz(nt _ Nt L10¢ + Nt L0t
o r r

n 2ntL15“/NZD)

o, [,6, D%/ N,
(N = N2)(nPL3 + 2 Lad /N, D 4 SN2 )

_ 2N,|8;_1 — &6;|D?
< (1 — 2mmy)E[A,] + |t; t

+ NZ|6t—1 — 5t|2D2 ntZde2U2

2 2
r 0

D?\/N, D
, —+ \/ NZD) +2nt5thL07

+ (N - Nz)Ung

+ ZﬂtétNLl( 9 (22)

where the last inequality follows from the strong monotonicity
condition (2). Recalling §; = Nl +, it is easy to verify that
3t3

1
NE
NI (23)

|6¢—1 — 0¢| < i

for all ¢+ > 1. The inequality (23) holds at t =1 since |0y —

01| = 61. Substituting 1, = mt, 0y = Nf(t;l and (23) into the
3t3
inequality (22), we have that
E[Ap41]
7 4 2
2. .. 2NSD?> NZD? dPUN}N3
<(1--)E[A
R I e
2N6NdL DQ\/ L3
+ 5 S+ VD) + (N = N
mts t
INS LoD

1.4
mrN3ts
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RU2NS N3

4
m2ts

2
N2 D?
r2t3

2 IN3NE D2
- n

4
rt3

1 2
ONSN3 L,D?*/N, LoD
+ — (= . +\/NzL1D+—0 )
3

D2

N2N3 (2D2 d2U2)

m2

(24)

where the second mequality follows since N, < N.

In the following, we use the standard mathematical inductive
method to prove that the following inequality holds for all
t>1:

2 2
NN} 2D D2 QPU? L2
E[A] < = (T + g+ ) PV N
12
ONF N} LD>/N, LoD\ D’
Tt (1 —|—\/NZL1D+0—) by
mts r t
(25)

Obviously, the inequality (25) holds at the initial time step
t = 1 since A; < D2. In what follows, we show that, if the
statement (25) holds at time step ¢, it must also hold for the
next time step ¢ + 1. To do so, we combine the inequalities
(24) and (25), yielding that

E[Ai11]
2 2
2 (NSN3 2D® D? q2U? L2
(B v
<( t) t3 r r2 + m2 ( )zt m2t
INSN3 /L, D*/N, LoDy D2
+ = (2 N | R + R )+ =)
mt3 r r t
2
N3N3 2D?2 D2 U2 L3
= 4y )4+ (N-=N,
+t§(r+r2+m2>( )2t2
ONEN3L, /L, D2V/N, LoD
+ (= 24 VNI + 222
mts r
2 2
N3N3 s2D?2  D? Q202 L2
_(1_2)(T<T T ) TV =N
2N N3 /IL.D LoD
V(DN N D))
mts r
2. D?
1— )2
+1-3)3
2
N3N3 /2D? D?  J2U2 L2
<= (2= D )+ (N = N0
(t+1)s\ r 72 m?2 m2(t+1)
INSN? /L,D2\/N. LoD\ D2
+/N,L D+—)+—,
m(t+1)%< r VL r t+1
(26)
where the last inequality follows since (1 — 7)% < 1<

ts ~ t‘H t3
The inequality (26)

1 _ 21
il and (1 — %)4

<SU-9i<m

41

shows that the statement (25) also holds at ¢ 4 1 given that it
holds at ¢, and thus we can conclude that the statement (25)
holds for all ¢ > 1. Finally, we have

%112
E[Ar] = E[l|lzr — ™[]
* * %2
=E[||zr — a7y + a2y — 2]
<ERAp +2||z5_, — 2%
2 2
2N2N3 /2D?2 D? J2U? 2L2
< (S )+ (N -
Ts T r2 m2 m2T
1 9
ANSN3L, /L DQ‘\/NZ LoD 2D?
+ ; 1( : +\/NzL1D+O—)+—
m1's r T
NS D2

_|_—
N3(T —1)3¢2
2 2, 1 _q
:o(N;NsT (N - N)T )

where the first inequality follows since (a + b)? < 2a? + 2b%.
The proof is complete.
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