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ABSTRACT
�is paper proposes a sampling-based algorithm for multi-robot

control synthesis under global Linear Temporal Logic (LTL) formu-

las. Robot mobility is captured by transition systems whose states

represent regions in the environment that satisfy atomic proposi-

tions. Existing planning approaches under global temporal goals

rely on graph search techniques applied to a synchronous product

automaton constructed among the robots. As the number of robots

increases, the state-space of the product automaton grows exponen-

tially and, as a result, graph search techniques become intractable.

In this paper, we propose a new sampling-based algorithm that

builds incrementally a directed tree that approximates the state-

space and transitions of the synchronous product automaton. By

approximating the product automaton by a tree rather than repre-

senting it explicitly, we require much fewer resources to store it and

motion plans can be found by tracing the sequence of parent nodes

from the leaves back to the root without the need for sophisticated

graph search techniques. �is signi�cantly increases scalability

of our algorithm compared to existing model-checking methods.

We also show that our algorithm is probabilistically complete and

asymptotically optimal and present numerical experiments that

show that it can be used to model-check product automata with

billions of states, which was not possible using an o�-the-shelf

model checker.
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1 INTRODUCTION
Control synthesis for mobile robots under complex tasks, captured

by Linear Temporal Logic (LTL) formulas, build upon either a

bo�om-up approach when independent LTL expressions are as-

signed to robots [7, 8, 13] or top-down approaches when a global

LTL formula describing a collaborative task is assigned to a team of

robots [4, 16], as in our work. Top-down approaches generate a dis-

crete high-level motion plan every robot using the individual tran-

sition systems that capture robot mobility and a Non-determisitic

BÜuchi Automaton (NBA) that represents the global LTL speci�ca-

tion. Speci�cally, by taking the synchronous product among the

transition systems and the NBA, a synchronous product automaton

can be constructed. �en, representing the la�er automaton as

a graph and using graph-search techniques, motion plans can be

derived that satisfy the global LTL speci�cation. As the number of

robots increases, the state-space of the product automaton grows

exponentially and, as a result, graph-search techniques are not

applicable as they become extremely resource demanding. Conse-

quently, these motion planning algorithms scale poorly with the

size of the network. To address these issues, several methods have

been proposed that fall into two categories: (i) internal memory

algorithms, such as partial order reduction [1] and symmetry or-

der reduction [5] and (ii) external memory algorithms [19] that

can handle state-spaces with billions of states but require external

memory devices.

In this paper, we propose an internal memory algorithm which

unlike existing model checking algorithms, completely avoids con-

structing the product among the transition systems and the NBA.

Speci�cally, motivated by existing sampling-based algorithms [12],

we build incrementally through a BÜuchi-guided sampling-based

algorithm directed trees that approximately represent the state-

space and transitions among states of the synchronous product

automaton. Speci�cally, to construct a motion plan in a pre�x-

su�x structure, we �rst build a tree incrementally until a path from

an initial to an accepting state is constructed. �is path corresponds

to the pre�x part of the motion plan and is executed once. �en, a

new tree rooted at an accepting state is constructed in a similar way
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until a cycle-detection method discovers a loop around the root.

�is cyclic path corresponds to the su�x part of the motion plan

and is executed in�nitely. �e advantage of the proposed method

is that approximating the product automaton by a tree rather than

representing it explicitly by an arbitrary graph structure, as existing

works do, results in signi�cant savings in resources both in terms

of memory to save the associated data structures and in terms of

computational cost in applying graph search techniques. In this

way, the scalability of the proposed model-checking algorithm is

signi�cantly increased compared to existing approaches. Moreover,

despite the approximate representation of the global automaton, we

show that the proposed LTL-based planning algorithm is probabilis-

tically complete and asymptotically optimal. We present numerical

simulations that show that the proposed approach can be used to

model-check product automata with billions of states, which was

impossible using the o�-the-shelf model checker PRISM [14].

To the best of our knowledge, the most relevant works are pre-

sented in [3, 10, 11, 18]. In [11], a sampling-based algorithm is

proposed which builds incrementally a Kripke structure until it

is expressive enough to generate a motion plan that satis�es a

task speci�cation expressed in deterministic µ-calculus. In [3], a

sampling-based algorithm is proposed for motion planning under

temporal goals. �e main goal of that work is to construct a discrete

abstraction of the environment by taking into account the geome-

try of obstacles, the robot dynamics, and the atomic propositions

that are satis�ed in the workspace, to solve planning problems that

involve temporal goals. Common in [3, 11] is that single-agent mo-

tion planning problems are considered, unlike our approach that is

amenable to multi-robot path planning problems. In order to apply

the methods proposed in [3, 11] to multi-agent motion planning

problems that we consider in this paper, a product system among

the agents needs to be constructed that is represented by a graph of

arbitrary structure, as in [18]. Speci�cally, in [18] a sampling-based

temporal logic path planning algorithm is proposed that also scales

well for large con�guration spaces. �e main di�erence between

[18] and the work proposed here is that we approximate the state-

space of the product automaton by a tree which is more economical

in terms of memory requirements and signi�cantly decreases the

computational cost of applying graph search techniques. �is al-

lows our method to handle large problems compared to the ones

that can be solved using the approach in [18]. Moreover, we show

that our proposed planning algorithm is asymptotically optimal

which is not the case in [18]. Finally, common in all the above

works is that a discrete abstraction of the environment is built until

it becomes expressive enough to generate a motion plan that sat-

is�es the LTL speci�cation. To the contrary, in our work, given a

discrete abstraction of the workspace, we build incrementally trees

that approximate the product automaton, until a motion plan is

constructed. In [10], a planning algorithm for multi-agent systems

under global temporal goals is proposed. �e main goal of that work

is to transform given transition systems that abstract robot mobility

into trace-included transition systems with smaller state-spaces

that are still rich enough to construct motion plans that satisfy the

global LTL speci�cation. However, this algorithm does not scale

well with the size of the number of robots, since it relies on the

construction of a product automaton among all agents, which is

not the case in our work.
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Figure 1: Graphical depiction of a wTS that abstracts robot
mobility in an indoor environment. Black disks stand for
the states of wTS, red edges capture transitions among states
and numbers on these edges represent the costwi for travel-
ing from one state to another one.

2 PROBLEM FORMULATION
Consider N mobile robots that evolve in a complex workspaceW ⊂

Rd according to the following dynamics: Ûxi (t) = fi (xi (t), ui (t)),
where xi (t) and ui (t) are the position and the control input asso-

ciated with robot i , i ∈ {1, . . . ,N }. We assume that there are W
disjoint regions of interest inW that are worth investigation or

surveillance. �e j-th region is denoted by `j and it can be of any

arbitrary shape. Robot mobility in the workspace is represented by

a transition system de�ned as follows:

De�nition 2.1. A weighted Transition System for robot i , denoted

by wTSi is a tuple wTSi =
(
Qi ,q

0

i ,→i ,wi ,AP,Li
)

where:

• Qi = {q
`j
i }

W
j=1

is the set of states, where a state q
`j
i indi-

cates that robot i is at location `j ;

• q0

i ∈ Qi is the initial state of robot i;
• →i⊆ Qi × Qi is the transition relation for robot i . Given

the robot dynamics, if there is a control input ui that can

drive robot i from location `j to `e , then there is a transition

from state q
`j
i to q`ei denoted by (q

`j
i ,q

`e
i ) ∈→i ;

• wi : Qi × Qi → R+
1

is a cost function that assigns

weights/cost to each possible transition in wTS. �ese costs

are associated with the distance that needs to be traveled

by robot i in order to move from state q
`j
i to state q

`k
i ;

• AP = {{π
`j
i }

W
j=1
}Ni=1

is the set of atomic propositions,

where π
`j
i is true if robot i is inside region `j and false

otherwise; and

• Li : Qi → 2
AP

is an observation/output relation giving

the set of atomic propositions that are satis�ed in a state.

Figure 1 illustrates De�nition 2.1 for a robot that resides in

an indoor environment. In what follows we give de�nitions re-

lated to wTSi , that we will use throughout the rest of the pa-

per. An in�nite path τi of wTSi is an in�nite sequence of states,

τi = τi (1)τi (2)τi (3) . . . such that τi (1) = q0

i , τi (m) ∈ Qi , and

1R+ and N+ stand for the positive real and natural numbers, respectively.
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(τi (k),τi (k + 1)) ∈→i , ∀k ∈ N+, where k is an index that points to

the k-th entry of τi denoted by τi (k). A �nite path of wTSi can be

de�ned accordingly. �e only di�erence with the in�nite path is

that a �nite path is de�ned as a �nite sequence of states of wTSi .

Given the de�nition of the weights wi in De�nition 2.1, the cost of

a �nite path τi , denoted by J (τi ), can be de�ned as follows:

J (τi ) =

|τi |−1∑
k=1

wi (τi (k),τi (k + 1)). (1)

In (1), |τi | stands for the number of states in τi . In words, the cost (1)

captures the distance traveled by robot i during the execution of the

�nite path τi . �e trace of an in�nite path τi = τi (1)τi (2)τi (3) . . .

of a transition system wTSi , denoted by trace(τi ) ∈
(
2
AP

)ω
,

where ω denotes in�nite repetition, is an in�nite word that is de-

termined by the sequence of atomic propositions that are true in

the states along τi , i.e., trace(τi ) = Li (τi (1))Li (τi (2)) . . . . �e lan-
guage Words(ϕi ) =

{
σ ∈ (2AP )ω |σ |= ϕi

}
, where |=⊆ (2AP ) × ϕi

is the satisfaction relation, is de�ned as the set of in�nite words

σ ∈ (2AP )ω that satisfy the LTL ϕi . Given an LTL formula ϕi , a

transition system wTSi both de�ned over the set of atomic propo-

sitions AP, the in�nite path τi of wTSi satis�es ϕi if and only if

trace(τi ) ∈ Words(ϕ)i , which is equivalently denoted by τi |= ϕi .
In what follows , we assume that the robots have to accomplish

a complex collaborative task captured by a global LTL statement ϕ

de�ned over the set of atomic propositions AP =
{
{π

`j
i }

W
j=1

}N
i=1

.

�en the problem that this paper addresses can be summarized as

follows

Problem 1. Given a global LTL speci�cationϕ, transitions systems
wTSi , for all robots i , determine a discrete team plan τ that satis�es
ϕ, i.e., τ |= ϕ.

3 PRELIMINARIES
In this section, we summarize an existing automata-based planning

algorithm that solves Problem 1. First the synchronous Product
Transition System (PTS) is constructed, which essentially captures

all the possible combinations of robots’ states in their respective

wTSi , and is de�ned as follows:

De�nition 3.1. Given N transition systems wTSi = (Qi ,q
0

i ,→i
,wi ,AP,Li ), the product transition system PTS = wTS1 ⊗ wTS2 ⊗

· · · ⊗wTSN is a tuple PTS = (QPTS,q
0

PTS
,−→PTS,wPTS,AP,LPTS)

where (a) QPTS = Q1 ×Q2 × · · · ×QN is the set of states; (b) q0

PTS
=

(q0

1
,q0

2
, . . . ,q0

N ) ∈ QPTS is the initial state, (c)−→PTS⊆ QPTS×QPTS

is the transition relation de�ned by the rule
2

∧
∀i (qi→iq′i )

qPTS→PTSq′
PTS

, where

with slight abuse of notation qPTS = (q1, . . . ,qN ) ∈ QPTS, qi ∈ Qi .
�e state q′

PTS
is de�ned accordingly. In words, this transition

rule says that there exists a transition from qPTS to q′
PTS

if there

exists a transition from qi to q′i for all i ∈ {1, . . . ,N }; (d) wPTS :

QPTS × QPTS → R+ is a cost function that assigns weights/cost

to each possible transition in PTS, de�ned as wPTS(qPTS,q
′
PTS
) =∑N

i=1
wi (Π |wTSiqPTS,Π |wTSiq

′

PTS
), where q′

PTS
,qPTS ∈ QPTS, and

2
�e notation of this rule is along the lines of the notation used in [2]. In particular, it

means that if the proposition above the solid line is true, then so does the proposition

below the solid line.

ΠwTSiqPTS stands for the projection of state qPTS onto the state

space of wTSi . �e state ΠwTSiqPTS ∈ Qi is obtained by removing

all states in qPTS that do not belong to Qi ; (e) AP is the set of

atomic propositions; and, (f) LPTS =
⋃

∀i Li : QPTS → 2
AP

is an

observation/output relation giving the set of atomic propositions

that are satis�ed at a state qPTS ∈ QPTS.

Any LTL formula ϕ de�ned over a set of atomic propositions

AP can be translated into a Nondeterministic BÜuchi Automaton

(NBA) over 2
AP

denoted by B [17], where its accepting language

is LB = Words(ϕ). �e NBA is de�ned as follows:

De�nition 3.2. A Nondeterministic BÜuchi Automaton (NBA) B

over 2
AP

is de�ned as a tuple B =
(
QB ,Q

0

B , Σ,→B ,Q
F
B

)
where

(a) QB is the set of states; (b) Q0

B ⊆ QB is a set of initial states; (c)

Σ = 2
AP

is an alphabet; (d)→B⊆ QB × Σ × QB is the transition

relation; and (e) QFB ⊆ QB is a set of accepting/�nal states.

Once the PTS and the NBA B that corresponds to the LTL ϕ
are constructed, a motion plan τ |= ϕ can be found by checking

the non-emptiness of the language of the Product BÜuchi Automaton
(PBA) P = PTS ⊗ B [2], which is de�ned as follows:

De�nition 3.3. Given the product transition system PTS = (QPTS,

q0

PTS
,−→PTS,wPTS,AP,LPTS) and the NBA B = (QB ,Q

0

B , Σ,→B

,QFB ), we can de�ne the Product BÜuchi Automaton P = PTS ⊗ B

as a tuple P = (QP ,Q
0

P ,−→P ,Q
F
P ) where (a) QP = QPTS × QB is

the set of states; (b) Q0

P = q0

PTS
× Q0

B is a set of initial states; (c)

−→P⊆ QP ×2
AP×QP is the transition relation de�ned by the rule:(

qPTS→PTSq′
PTS

)
∧

(
qB

L
PTS(q′PTS

)
−−−−−−−−−→q′B

)
qP=(qPTS,qB )−→Pq′P=

(
q′

PTS
,q′B

) . Transition from state qP ∈ QP

to q
′

P ∈ QP , is denoted by (qP ,q
′
P ) ∈−→P , or qP −→P q′P ; and

(d)QFP = QPTS × Q
F
B is a set of accepting/�nal states.

To check the non-emptiness of the language of P denoted by

LP = trace(PTS) ∩ LB , where trace(PTS) collects all words that

can be generated by the PTS, and to �nd a motion plan τ that

satis�es ϕ, existing model checking methods can be used that are

based on graph search algorithms; see, e.g., [7]. Such motion plans

can be wri�en in a pre�x-su�x structure τ = τ pre[τ suf]ω . �e

pre�x part τ pre
has the following structure τ pre = q1

PTS
q2

PTS
. . .qK

PTS

and is executed only once. �e su�x part τ suf
has the following

structure τ suf = qK
PTS

qK+1

PTS
. . .qK+S

PTS
qK+S+1

PTS
, where qK+S+1

PTS
= qK

PTS
,

and is repeated in�nitely. �e cost of such a motion plan is de�ned

as

J (τ ) =
K−1∑
k=1

wPTS(τ
pre(k),τ pre(k + 1))︸                                 ︷︷                                 ︸

Cost J (τ pre) of pre�x

+

K+S∑
k=K

wPTS(τ
suf(k)τ suf(k + 1))︸                                ︷︷                                ︸

Cost J (τ suf) of su�x

= J (τ pre) + J (τ suf), (2)

which in fact captures the total distance traveled by all robots during

the execution of the pre�x and a single execution of the su�x part.
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In principle, to generate a motion plan τ that satis�es ϕ, the PBA is

viewed as a weighted directed graph GP = {VP , EP ,wP }, where

the set of nodes VP is indexed by the set of states QP , the set of

edges EP is determined by the transition relation −→P , and the

weights wP assigned on each edge are inherited by the function

wPTS. Speci�cally, the weight assigned on a edge that connects two

nodes that represent the states qP and q′P is equal to wP (qP ,q
′
P ) =

wPTS(Π |PTSqP ,Π |PTSq
′
P ). �en we �nd the shortest paths from the

initial states to all reachable �nal states qP ∈ Q
F
P and projecting

these paths onto PTS results in the pre�x parts τ pre,f
, where f =

{1, . . . , |QFP |}. �e respective su�x parts τ suf,f
are constructed

similarly by computing the shortest cycle around the f -th �nal

state. All the resulting motion plans τ f = τ pre,f [τ suf,f ]ω satisfy

the LTL speci�cation ϕ. Among all these plans, we can easily

compute the optimal plan that minimizes the cost function de�ned

in (2) by computing the cost J (τ f ) for all plans and picking the one

with the smallest cost.

4 PROPOSED SOLUTION
�e automata-based planning algorithm described in Section 3 can

be employed to solve Problem 1. However, constructing the PBA

and applying graph-search techniques on it, is resource demanding

and scales poorly with the size of the network. �us, in this sec-

tion, we propose a sampling-based planning algorithm that scales

well with the number of agents and constructs a discrete motion

plan τ in pre�x-su�x structure, i.e., τ = τ pre[τ suf]ω , that satis�es

a given global LTL speci�cation ϕ.
3

�e procedure is based on

an incremental construction of a directed tree that approximately

encompasses the state-space QP and the transition relation→P of

the PBA de�ned in De�nition 3.3. �e construction of the pre�x

and the su�x part is described in Algorithms 1 and 7, respectively.

In what follows, we denote by GT = {VT , ET ,CT } the tree that

approximately represents the PBA P . �e set of nodesVT contains

the states of QP that have already been sampled and added to the

tree structure. �e set of edges ET captures transitions among the

nodes inVT , i.e., (qP ,q
′
P ) ∈ ET , if there is a transition from state

qP ∈ VT to state q′P ∈ VT . �e set CT collects the cost of reaching

each node qP ∈ VT from the root of the tree; with slight abuse of

notation the cost of a node that represents a state qP is denoted by

CT (qP ).

4.1 Construction of Pre�x Parts
In this Section, we describe how the pre�x part is constructed. �is

procedure is described in Algorithm 1, as well. �e setVT initially

contains only the initial state q0

P of the PBA [line 1 , Alg. 1] and

therefore, the set of edges is initialized as ET = ∅ [line 2, Alg. 1].

By convention, we assume that the cost of q0

P is zero [line 3, Alg.

1]. �e set F ⊆ VT [line 4, Alg. 1] collects all the �nal states of P
that exist in the tree.

4.1.1 Sampling a state qnewP ∈ QP . �e �rst step for the con-

struction of the graph GT is to sample a state from the state-space

of the product transition system. �is is achieved by a sampling

3
LTL speci�cations are satis�ed by plans that are in�nite sequences of states and,

therefore, they cannot be manipulated in practice. Such an issue can be resolved by

representing these plans by �nite sequences of states, in a pre�x-su�x form, called

pre�x-su�x form, where the pre�x is executed once and su�x is executed inde�nitely.

Algorithm 1: Construction of pre�x parts.

Input: Initial state q0

i , transition system wTSi , for all robots i ,

NBA B, maximum number of iterations n
pre

max

Output: Pre�x parts τ pre,f
, set of �nal states F

1 VT = q
0

P = {q
0

PTS
,q0

B }, where q0

PTS
= {q0

1
,q0

2
, . . . ,q0

N };

2 ET = ∅;

3 CT (q
0

P ) = 0;

4 F = ∅;

5 for n = 1 : 1 : n
pre
max do

6 qnew

PTS
= Sample(Q1, . . . ,QN );

7 for b = 1 : |QB | do
8 qnew

B = QB (b);

9 qnew

P = (qnew

PTS
,qnew

B );

10 if qnewP < VT then
11 [VT , ET ,CT ] = Extend(qnew

P ,→P );

12 if qnewP ∈ VT then
13 if (qnewB ∈ QFB ) then
14 F = F ∪ {qnew

P };

15 [ET ,CT ] = Rewire(qnew

P ,VT , ET ,CT );

16 ET = OptimizeTree(GT );

17 for f = 1 : |F | do
18 τ pre,f = FindPath(GT ,q

0

P ,F (k));

function Sample that generates independent samples that belong

to QPTS from a given distribution; see Algorithm 2. �e sampled

state is denoted by qnew

PTS
[line 6, Alg. 1]. Since our goal is to build

incrementally a graph whose set of nodes represents the state space

QP we need to append to qnew

PTS
a state from the state-space QB of

NBA B. Let qnew

B = QB (b) [line 8, Alg. 1] be the candidate BÜuchi

state that will be a�ached to qnew

PTS
, where b ∈ {1, . . . , |QB |}. �e

following procedure is repeated for all b ∈ {1, . . . , |QB |}. First, we

construct the state qnew

P = (qnew

PTS
,qnew

B ) ∈ QP [line 9, Alg. 1] and

in what follows, we check if this state can be added to the tree GT
[lines 10-15, Alg. 1]. In case the state qnew

P has not already been

added to the tree from a previous iteration of Algorithm 1, i.e, if

qnew

P < VT [line 10, Alg. 1], we check which node inVT (if there is

any) can be the parent of qnew

P in the tree GT . �is is accomplished

by the function Extend described in Algorithm 3.

4.1.2 Adding a new edge to ET . �e �rst step in Algorithm 3 is to

construct the set S→qnew

P
⊆ VT that collects all states qP ∈ VT that

abide by the transition rule: (qP ,q
new

P ) ∈→P [line 1, Alg. 3]. If the

resulting set is empty then the sample qnew

P is not added to the tree.

In case S→qnew

P
, ∅, then the state qnew

P is added to the tree [lines

3-6, Alg. 3]. �e parent of qnew

P , denoted by q
prev

P satis�es q
prev

P =

argminqP ∈S→qnew

P
[CT (qP ) +wPTS(Π |PTSqP ,Π |PTSq

new
P )], where by

de�nition of the set CT , CT (qP )+wPTS(Π |PTSqP ,Π |PTSq
new
P ) stands

for the cost of the node qnew

P if it gets connected to the root through

the node qP . In other words, the parent q
prev

P of node qnew

P is

selected among all states in S→qnew

P
so that the incurred cost of

qnew

P is minimized [line 3, Alg. 3]. �e set of nodes and edges is

updated in lines 4 and 5, respectively, asVT = VT ∪ {q
new

P } and

ET = ET ∪ {(q
prev

P ,qnew

P )}. Next we compute the cost of node qnew

P
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Figure 2: Graphical depiction of Algorithm 3. �e black
square stands for the root of the tree and the gray disks rep-
resent nodes in the set VT . Black arrows represent transi-
tions captured by ET . �e blue diamond stands for the state
qnewP and the dashed blue arrow represents the new edge that
will be added to the set ET a�er the execution of Algorithm
3 (line 5, Alg. 3).

as follows [line 6, Alg. 3]:

CT (q
new
P ) = CT (q

prev
P )︸      ︷︷      ︸

Cost of reaching qprev
P from the root of the tree GT

+wPTS(Π |PTSq
prev
P ,Π |PTSq

new
P )︸                                ︷︷                                ︸

cost of reaching qnew
P from qprev

P

. (3)

Algorithm 3 is illustrated in Figure 2, as well.

4.1.3 Rewiring. Once a new state qnew

P = [qnew

PTS
,qnew

B ] has been

added to the tree [line 12, Alg. 1], two steps follow. First, we check

if qnew

P is an accepting state of the PBA P . To achieve that, it su�ces

to check if qnew

B ∈ QFB . If this is the case, the set F that collects

the �nal states that exist in the tree is updated [lines 13-15, Alg. 1].

Second, we rewire the nodes in qP ∈ VT that can potentially get

connected to the root q0

P of the tree through the node qnew

P [line 13,

Alg. 1] if this will decrease the cost CT (qP ). �e rewiring process

is described in Algorithm 4 and is illustrated in Figure 3.

In Algorithm 4 we �rst construct the set S←qnew

P
⊆ VT that

collects all states of qP ∈ VT that abide by the following transition

rule: (qnew

P ,qP ) ∈→P [ line 1, Alg. 4]. �en for all states qP ∈
S←qnew

P
we check if their current cost CT (qP ) is greater than then

the cost they would have if they were connected to the root through

qnew

P 3. If this is the case for a node qP ∈ S←qnew

P
, then the new

parent of qP is qnew

P , i.e, there is a directed edge from qnew

P to

qP , and the edge that was connecting qP to its previous parent

is discarded [lines 4-5, Alg. 4]. �e cost of node qP is updated

as CT (qP ) = CT (q
new

P ) + wPTS(Π |PTSq
new
P ,Π |PTSqP ) to take into

account the new path through which it gets connected to the root

[line 6, Alg. 4].

4.1.4 Optimizing GT . �e above procedure terminates a�er

n
pre

max
iterations. Once this happens, we modify the resulting set of

edges ET , as per Algorithm 5 so that the cost of each node inVT is

minimized [line 16, Alg. 1]. To achieve that, it su�ces to rewire all

Figure 3: Graphical depiction of Algorithm 4. �e black
square stands for the root of the tree and the gray disks
and the blue diamond represent nodes in the set VT . Black
arrows represent transitions captured by ET . �e blue dia-
mond stands for the state qnewP . Dashed gray arrows stand
for the edges that will be deleted from the set ET during the
execution of Algorithm 4 (line 4, Alg. 4). Red arrows stand
for the new edges that will be added to ET during the execu-
tion of Algorithm 4 (line 5, Alg. 4).

nodes in the graph GT [lines 2-4, Alg. 5]. A�er rewiring all nodes, a

new set of edges is constructed denoted by EkT , where k = 2, 3, . . .

and E1

T := ET . �is rewiring process is repeated until the set of

edges stops changing, i.e, until EkT = E
k−1

T [lines 5-8, Alg. 5]. In

this way, we minimize the cost of all nodes and, consequently, of

nodes that represent �nal states, as well, since F ⊂ VT . Moreover,

notice that Algorithm 5 will terminate a�er a �nite number of it-

erations, since the setVT is �nite and there is a �nite number of

possible transitions among these nodes captured by the transition

rule −→P .

4.1.5 Construction of Paths. A�er optimizing the tree structure,

we compute the path that connects each �nal state that belongs

to the set F to the root of the tree q0

P [line 17-18, Alg. 1]. �e

path that connects the f -th �nal state of the set F to the root is

denoted by τ pre,f
and is computed by Algorithm 6. Note that for

the computation of τ pre,f
in Algorithm 6 only the parent of each

node in the graph GT is required, due to the tree structure of GT .

Speci�cally, the pre�x part τ pre,f
is constructed by �nding the

parent of a node qP ∈ VT starting from the node that represents

the �nal state F (f ), until the root of the tree is reached [lines 1-

7, Alg. 6]. �e parent of each node is computed by the function

parent : VT →VT that maps a node qP ∈ VT to a unique vertex

q′P ∈ VT if (q′P ,qP ) ∈ ET , i.e., parent(qP ) = q′P if (q′P ,qP ) ∈ ET .

By convention, we assume that parent(q0

P ) = q
0

P , where q0

P is the

root of the treeGT . In line 7, Π |PTSpT stands for the projection of the

pathpT onto the state space of PTS. Moreover, in line 4 of Algorithm

6, we assume that the last node introduced in the path pT is placed

at the �rst entry of pT . �us, for the resulting pre�x part τ pre,f
, it

holds that τ pre,f (1) = ΠPTSq
0

P and τ pre,f (|τ pre,f |) = ΠPTSF (f ).
Notice that the computational complexity of constructing the

pre�x part τ pre,f
is O(|VT |). On the other hand, if the PBA was

represented by a graph G = {V, E} of arbitrary structure, then the
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Algorithm 2: Function Sample(Q1, . . . ,QN )

1 qnew

PTS
= [ ];

2 for i = 1 : 1 : N do
3 Pick a state qi from the set Qi according to probability

distribution f ;

4 qnew

PTS
= [qnew

PTS
,qi ];

5 return qnewPTS ;

Algorithm 3: Function Extend(qnew

P )

1 Collect in set S→qnew

P
all states qP ∈ VT that abide by the

following transition rule: (qP ,q
new

P ) ∈→P ;

2 if S→qnew
P
, ∅ then

3 q
prev

P =

argminqP ∈S→qnew

P
[CT (qP ) +wPTS(Π |PTSqP ,Π |PTSq

new
P )];

4 VT = VT ∪ {q
new

P };

5 ET = ET ∪ {(q
prev

P ,qnew

P )};

6 CT (q
new
P ) = CT (qP ) +wPTS(Π |PTSqP ,Π |PTSq

new
P );

7 returnVT , ET , CT ;

Algorithm 4: Function Rewire(qnew

P ,VT , ET ,CT )

1 Collect in set S←qnew

P
all states of qP ∈ VT that abide by the

following transition rule: (qnew

P ,qP ) ∈→P ;

2 for qP ∈ S←qnew
P

do
3 if CT (qP ) > CT (qnewP ) +wPTS(Π |PTSq

new
P ,Π |PTSqP ) then

4 ET = ET \ {(Parent(qP ),qP )};

5 ET = ET ∪ {(q
new

P ,qP )};

6 CT (qP ) = CT (q
new

P ) +wPTS(Π |PTSq
new
P ,Π |PTSqP );

7 return ET , CT ;

Algorithm 5: Function OptimizeTree(GT )

1 E1

T = ET ;

2 for qP ∈ VT do
3 [E2

T ,CT ] = Rewire(VT , E
1

T ,CT );

4 k = 2;

5 while EkT , E
k−1

T do
6 for qP ∈ VT do
7 [Ek+1

T ,CT ] = Rewire(qP ,VT , E
k
T ,CT );

8 k = k + 1;

9 return ET = EkT ;

computational complexity of the Dijkstra algorithm to �nd the path

τ pre,f
that connects the state F (f ) to the root with the minimum

cost is O(|E | + |V| log(|V|)), where |E | + |V| log(|V|) > |V|.

4.2 Construction of Su�x Parts
�e construction of the su�x parts is presented in Algorithm 7.

�e goal of this Algorithm is to �nd a sequence of states, denoted

Algorithm 6: Function FindPath(GT ,q
initial

P ,q
goal

P )

1 pT = {q
goal

P };

2 q
prev

P = Parent(q
goal

P );

3 while qprevP , qinitialP do
4 pT = pT ∪ {q

prev

P };

5 q
prev

P = Parent(q
prev

P );

6 pT = pT ∪ {q
initial

P };

7 pT = Π |PTSpT ;

8 return pT ;

Figure 4: Graphical depiction of detecting cycles around a
�nal state F (f ) (black square) which acts as the root of the
tree. �e red diamond stands for a state qP ∈ Sf . Solid red
arrows stand for the path that connects the state qP ∈ Sf to
the root F (f ). �e dashed red arrow implies that a transition
from qP to F (f ) is feasible according to the transition rule
−→P ; however, such a transition is not included in the set ET .
�e cycle around the �nal state F (f ) is illustrated by solid
and dashed red arrows.

by τ
suf,f
i , in QP that starts from state F (f ) and ends at the same

state F (f ), i.e., a cycle around state F (f ), where any two consec-

utive states in τ
suf,f
i respect the transition rule →P , for all f =

{1, . . . , |F |}. For this purpose, we build a tree GT = {VT , ET ,CT }

that approximates the PBA P , in a similar way as in Section 4.1

which combined with a cycle-detection method results in construc-

tion of τ
suf,f
i .

In Algorithm 7, for a given �nal state F (f ), which comes from

the execution of Algorithm 1, the tree initially consists only of

the state F (f ), which by convention has zero cost [lines 2-4, Alg.

7]. Also, given a �nal state F (f ), we de�ne the set Sf = {qP ∈
VT |(qP ,F (f )) ∈→P } that contains all nodes that currently exist

in the setVT from which a transition to the state F (f ) is feasible.

�is set is initialized as Sf = ∅ [line 5, Alg. 7]. Once the tree is

initialized, we check if we can add the �nal state F (f ) to the set

Sf [line 6, Alg. 7]. If this is the case, then we update the set Sf
accordingly [line 19, Alg. 7] and we terminate the construction of
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the tree. Otherwise, we continue building the tree GT [lines 7-17,

Alg. 7], exactly as we did for the construction of the pre�x part in

Algorithm 1. When a new node qnew

P is added to the set VT , we

check if a transition from qnew

P to F (f ) is feasible according to the

transition rule→P [line 15, Alg. 7]. If so, we add the state qnew

P to

the set Sf . In other words, a cycle around a �nal state F (f ) can be

constructed by computing the path in the graph GT that starts from

the root F (f ) of the tree, ends at a state qP ∈ VT ∩Sf followed by

the state F (f ); see Figure 4. In general, since there may be more

than one states in Sf , there will be multiple possible cycles around

a �nal state F (f ); speci�cally, there will be |Sf | cycles around

F (f ).
Next, we optimize the structure of the tree by modifying the set

of edges ET , as we did in Algorithm 1 [line 20, Alg. 7]. Given the

optimized tree structure, among all detected cycles around F (f ),
we pick the optimal cycle for all f ∈ {1, . . . , |F |} [lines 22-26, Alg.

7]. For this purpose, given a �nal state F (f ), if Sf , ∅, �rst we

�nd all possible cycles around the state F (f ) projected onto the

state-space of the PTS [lines 22-24, Alg. 7]. Among them we pick

the one that has the minimum cost, in terms of the cost function

(1) [lines 25-26, Alg. 7]. �e resulting cycle around state F (f ) is

denoted by τ suf,f
.

4.3 Construction of Optimal Discrete Plan
By construction, any motion plan τ f = τ pre,f [τ suf,f ]ω , with Sf ,

∅, f ∈ {1, . . . , |F |} satis�es the global LTL speci�cation ϕ. �e

cost J (τ f ) of each plan τ f is de�ned in (2). Among all the motion

plans τf |= ϕ, our proposed method returns the solution of Problem

1 with the smallest cost J (τ f ) denoted by τ , i.e., τ = τ f∗ , where

f∗ = argminf J (τ
f ).

5 CORRECTNESS AND OPTIMALITY
In this section we provide results pertaining to probabilistic com-

pleteness and optimality of the proposed algorithm. First, some

preliminary notations are given, followed by the completeness prop-

erty of the proposed algorithm. Let GnT = {V
n
T , E

n
T ,C

n
T } denote

the tree that has been constructed by either Algorithm 1 or Al-

gorithm 7 at the n-th iteration. Also, let X
goal
⊂ QP denote the

goal region. Speci�cally, for Algorithms 1 and 7, the goal region

is de�ned as X
goal
= {qP ∈ Qp |qP ∈ Q

F
P } and X

goal
= {qP ∈

Qp |(qP ,F (f )) ∈→P , for allf ∈ {1, 2, . . . , |F |}}, respectively.
4

Theorem 5.1 (Probabilistic Completeness). If there exists a
solution for Problem 1, then the proposed algorithm in Section 4.3 is
probabilistically complete, i.e., it will �nd with probability 1 a motion
plan τ that satis�es the LTL speci�cation ϕ.

Proof. �e proof can be found in Appendix A. �

Next, we examine the optimality of the resulting motion plan τ
constructed in Section 4.3.

Theorem 5.2 (AsymptoticOptimality). �ealgorithm described
in Section 4.3 to construct a motion plan that satis�es a given global

4
Recall that during the execution of Algorithms 1 and 7, the states that belong to

the set of nodes VT and to the goal region Xgoal are collected in the sets F and Sf ,

respectively.

Algorithm 7: Construction of su�x parts.

Input: Set of �nal states F , transition system wTSi , for all

robots i , NBA B, maximum number of iterations nsuf

max

Output: Su�x Parts τ suf,f

1 for f = 1 : 1 : |F | do
2 VT = F (f );

3 ET = ∅;

4 CT (F (f )) = 0;

5 Sf = ∅;

6 if (F (f ),F (f )) <→P then
7 for n = 1 : 1 : n

suf
max do

8 qnew

PTS
= Sample(Q1, . . . ,QN );

9 for b = 1 : |QB | do
10 qnew

B = QB (b);

11 qnew

P = (qnew

PTS
,qnew

B );

12 if qnewP < VT then
13 [VT , ET ,CT ] = Extend(qnew

P ,→P );

14 if qnewP ∈ VT then
15 if (qnewP ,F (f )) ∈→P then
16 Sf = Sf ∪ {q

new

P };

17 [ET ,CT ] =

Rewire(qnew

P ,VT , ET ,CT );

18 else
19 Sf = {F (f )};

20 ET = OptimizeTree(GT );

21 for f = 1 : 1 : |F | do
22 if Sf , ∅ then
23 for e = 1 : |Sf | do
24 τ̃ suf,e = FindPath(GT ,Sf (e),F (f ));

25 e∗ = argmine J (τ̃
suf,e );

26 τ suf,f = τ̃ suf,e∗
;

LTL speci�cation ϕ is asymptotically optimal, i.e., the discrete motion

plan τn
suf
max

npre
max

that is generated by this algorithm satis�es

P

({
lim

npre
max→∞,n

suf
max→∞

J (τ
nsuf
max

npre
max
) = J∗

})
= 1, (4)

where J is a cost function, J∗ is the optimal cost, and npremax and n
suf
max

are the maximum number of iterations for Algorithms 1 and 7, re-
spectively.

Proof. �e proof can be found in Appendix B. �

Using �eorem 5.2, we have the following result.

Corollary 5.3. Given the trees constructed by Algorithms 1 and 7
within npremax and n

suf
max iterations, respectively, the proposed algorithm

will �nd the best possible plan τ in terms of the cost function (2).

6 SIMULATION RESULTS
In this section, we present two case studies, implemented using

MATLAB R2015b, that illustrate the e�ciency and scalability of

the proposed algorithm. �e �rst case study pertains to a motion
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planning problem with a PBA that has 1,073,741,824 states. Re-

call that the state-space of the PBA de�ned in De�nition 3.3 has

ΠN
i=1
|Qi | |QB | states. �is problem cannot be solved by either the

o�-the-shelf model checker PRISM or the work in [10]. Speci�-

cally, our implementation of [10] failed to provide a motion plan

for the considered case study due to the large state-space of the

resulting PBA. A direct comparison with [18] cannot be made, since

in that work samples for the robot positions are drawn from the

continuous space, which is not the case here. Note, however, that

in [18], the size of the regions that observe the atomic propositions

a�ects the number of samples required for the construction of an

expressive enough transition system that can generate a motion

plan. �erefore, for small regions, more samples are needed and

the state space of the resulting PBA may be too large to manipulate

in practice. �is issue becomes more pronounced, as the size of the

NBA increases. On the other hand, our algorithm scales well to

very large problems since it avoids the construction of the PBA and

the application of graph search methods to �nd optimal motion

plans altogether. �e proposed tree-based approximation of the

PBA requires much fewer resources to store and motion plans can

be found easily by tracing the sequence of parent nodes from the

leaves back to the root. In the second case study, we consider a

motion planning problem with a PBA that has 5,103 states. �is

state-space is small enough to manipulate and construct an optimal

plan using the standard method described in Section 3. In this

simulation study, we examine the performance of the proposed

algorithm in terms of runtime and optimality.

6.1 Case Study I
In the �rst simulation study, we consider a network of N = 9 robots

residing in a workspace withW = 8 regions of interest. Mobility

of each robot in this workspace is captured by a transition system

which has |Qi | = 8 states, as shown in Figure 5(a). �e collabora-

tive task that is assigned to the robots describes an intermi�ent

connectivity problem, that was de�ned in our previous work [9].

In this problem se�ing, robots move along the edges of a mobility

graph and communicate only when they meet at the vertices of

this graph, giving rise to a dynamic communication network. �is

communication network is intermi�ently connected if communi-

cation occurs at the vertices of the mobility graph in�nitely o�en.

Such an intermi�ent connectivity requirement can be captured by

a global LTL formula. In particular, in this simulation study we

consider the following global LTL speci�cation: ϕ = [�^(π `5

1
∧

π `5

2
)]∧ [�^(π `1

2
∧π `1

3
∧π `1

4
)]∧ [�^(π `7

4
∧π `7

5
∧π `7

6
)]∧ [�^(π `8

6
∧

π `8

7
)] ∧ [�^(π `4

7
∧ π `4

8
)] ∧ [�^(π `3

8
∧ π `3

9
)] ∧ [¬(π `5

1
∧ π `5

2
)Uπ `7

1
].

In this LTL formula, �, ^, andU stand for the temporal operators

‘always’, ‘eventually’, and ‘until’ respectively, and ∧ and ¬ repre-

sent the Boolean conjunction and negation operator. In words, the

considered LTL-based task in requires (a) robots 1 and 2 to meet at

location `5 in�nitely o�en, (b) robots 2, 3 and 4 to meet at location

`7, in�nitely o�en, (c) robots 4, 5, and 6 to meet at location `7,

in�nitely o�en, (d) robots 6 and 7 to meet at location `8 in�nitely

o�en, and (e) robots 7 and 8 to meet at location `4, in�nitely of-

ten, (f) robots 8 and 9 to meet at location `3, in�nitely o�en, and

(g) robots 1 and 2 to never meet at location `5 until robot 1 visits

location `7 to collect some available information. �e considered
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(a) wTSi for Simulation Study I
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(b) wTSi for Simulation Study II

Figure 5: Graphical depiction of the transition systemswTSi ,
for all robots i used in simulation study I (Figure 5(a)) and II
(Figure 5(b)). Black disks represent the states of wTSi and
red edges stand for feasible transitions among the states.

LTL formula corresponds to a NBA with |QB | = 8 states.
5

Notice

that the resulting NBA has only one �nal state, i.e., the PBA has

|QPTS | × 1 = 8
9 = 134, 217, 728 �nal states (either reachable or not).

Algorithms 1 and 7 were both run until a �nal state and cycle

around it are detected, respectively. Algorithm 1 run for 14482

iterations and a tree graph GT with |VT | = 38072 nodes was con-

structed, where one of these nodes corresponded to a �nal state,

i.e., |F | = 1. For the storage of this tree structure 1.59 Mb were

utilized. Next, we optimized the tree graph as per Algorithm 5 and

then the pre�x part τ pre,1
was constructed. Notice in Figure 6 that

the cost of the pre�x part τ pre,f
, or equivalently, the cost CT (F (1))

is non-increasing over iterations k of Algorithm 5, as expected by

construction of this algorithm and by Corollary 5.3. Figure 7(a)

depicts the number of rejected states with respect to iterations n of

Algorithm 1.

1 2 3 4 5 6 7 8 9 10

390

395

400

405

410

415

420

425

430

435

Figure 6: Simulation Study I: Evolution of the costs J (τpre,1)
and J (τ suf,1) over iterations κ of Algorithm 5 that optimizes
the resulting tree structures.

5
�e translation of the LTL formula to a NBA was made by the tool developed in [6].
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(b) Simulation Study II

Figure 7: Graphical depiction of the number of rejected
states per iteration a�er running Algorithm 1 for 21000 and
3072 iterations for simulation studies I and II. �e result-
ing trees have 80124 and 3503 nodes, respectively. Red di-
amonds represent the number of rejected states at each iter-
ation. Blue dashed line shows the �rst iteration at which a
�nal state was detected. At iterationn of Algorithm 1, a state
sampled from QPTS is taken. Given this state, |QB | states
that belong to QP are created. Consequently, at iteration n
at most |QB | states can be rejected or accepted.

Next the construction of the su�x part follows. Algorithm 7 ran

for 15938 iterations and constructed a tree graph with |VT | = 37419

nodes, with |Sf | = 1. For the storage of this tree structure 1.49

Mb were utilized. A�er optimizing the tree graph, the su�x part

τ suf,1
was designed. In Figure 6 the evolution of the cost J (τ suf,1)

during the execution of Algorithm 5 is depicted, which decreases

as predicted by Corollary 5.3. �e total cost of the resulting motion

plan τ 1 = τ pre,1[τ suf,1]ω that satis�es the considered LTL task is

J (τ 1) = J (τ pre,1) + J (τ suf,1) = 408.0712 + 394.3007 = 802.3719

meters.

Algorithm 1 detected a �nal state within 2.5 hours [lines 1-15, Alg.

1], the resulting tree structure was optimized within 7 hours [line 16,

Alg. 1], and then the optimal pre�x τ pre,1
was constructed in 0.017

seconds. Similar runtimes were observed for the construction of

the respective su�x part τ suf,1
. Notice that the o�-the-shelf model

checker PRISM could not generate a motion plan for this simulation

scenario. Speci�cally, PRISM could generate a motion plan only

when we considered 6 robots and a smaller part of the considered

LTL formula, which was
¯ϕ = [�^(π `5

1
∧ π `5

2
)] ∧ [�^(π `1

2
∧ π `1

3
∧

π `1

4
)] ∧ [�^(π `7

4
∧ π `7

5
∧ π `7

6
)] ∧ [�^(π `8

6
∧ π `8

7
)]. In this case,

the size the state-space of the PBA was |QP | = 10, 485, 760. On

the other hand, notice that in the la�er case, PRISM �nished the

model-checking process faster than our proposed algorithm, and

speci�cally, in 1.5 minutes.

6.2 Case Study II
In the second simulation study, we consider a network of N = 3

robots, where mobility of each robot is captured by the transition

system depicted in Figure 5(b), which has |Qi | = 9 states, for all

robots i . �e assigned task is expressed in the following temporal

logic formula: ϕ = �^(π `6

1
∧π `4

2
)∧¬(π `7

1
)∧(¬p`4

2
Up`4

3
)∧(^π `7

3
)∧

(�^π `2

2
) where the respective NBA has |QB | = 7 states and one of

12
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16

18

20
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24

Figure 8: Simulation Study II: Evolution of the cost J (τ ) of
the resulting optimal motion plan τ for various maximum
numbers of iterations for Algorithms 1 and 7. �e time re-
quired for the construction of the optimal pre�x and su�x
part along with the number of detected �nal states for each
case are included in the gray colored box. �e red line stands
for the optimal cost J∗ = 12.

them is a �nal state. In words, this LTL-based task requires (a) robots

1 and 2 to visit locations `6 and `4, respectively, simultaneously and

in�nitely o�en, (b) robot 1 to always avoid location `7, (c) robot

2 to avoid location `4 until robot 3 visits location `4, (d) robot 3

to visit location `7 eventually, and (e) robot 2 to visit location `2
in�nitely o�en. In this simulation study, the state space of the PBA

consists of ΠN
i=1
|Qi | |QB | = 5, 103 states which is small enough in

order to compute the optimal plan, using the method described in

Section 3. �e cost of the optimal plan that satis�es the considered

LTL formula is J∗ = 12 meters.

Initially, Algorithms 1 and 7 were run until a �nal state and a

cycle around it are detected, respectively. Algorithm 1 found a �nal

state a�er 152 iterations corresponding to 7.5 seconds and Algo-

rithm 7 detected a cycle around this �nal state a�er 36 iterations

corresponding to 0.31 seconds. PRISM veri�ed that there exists a

motion plan that satis�es the considered LTL formula in 2.1 seconds.

�e cost of the resulting plan τ1 is J (τ 1) = J (τ pre,1) + J (τ suf,1) =

12 + 12 = 24 meters. Observe in Figure 8 that as we increase the

number of iterations that Algorithms 1 and 7 run, the cost of the

resulting plans decreases, as expected due to �eorem 5.2. �e

number of detected �nal states and runtime for each case are also

depicted in the same �gure. Figure 7(b) depicts the number of

rejected states with respect to the iterations n of Algorithm 1.

7 CONCLUSION
In this paper we proposed a sampling-based control synthesis algo-

rithm for multi-robot systems under global linear temporal logic

(LTL) formulas. Robot mobility in the workspace was captured by

transition systems whose states represented regions of the environ-

ment that satisfy atomic propositions. Existing approaches rely on

graph search methods applied to a synchronous product automa-

ton constructed among all agents, which are intractable and scale
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poorly with the number of robots. In this paper, we proposed a new

sampling-based algorithm to build incrementally trees that approx-

imated the state-space and transitions of the synchronous product

automaton increasing in this way signi�cantly scalability of our

method compared to existing model-checking approaches. More-

over, we showed that the proposed algorithm is probabilistically

complete and asymptotically optimal. Simulation studies showed

that the proposed approach can be used to model-check product au-

tomata with billions of states, which was impossible using currently

available methods. Finally, although the proposed sampling-based

model checking algorithm was presented for robotic path planning

problems, it can be employed for any LTL-based control synthesis

problem, as e.g., in tra�c network control [15].

REFERENCES
[1] Abdulla, P., Aronis, S., Jonsson, B., and Sagonas, K. Optimal dynamic partial

order reduction. In ACM SIGPLAN Notices (2014), vol. 49, pp. 373–384.

[2] Baier, C., and Katoen, J.-P. Principles of model checking, vol. 26202649. MIT

press Cambridge, 2008.

[3] Bhatia, A., Kavraki, L. E., and Vardi, M. Y. Sampling-based motion planning

with temporal goals. In International Conference on Robotics and Automation
(ICRA) (Anchorage, AL, May 2010), pp. 2689–2696.

[4] Chen, Y., Ding, X. C., and Belta, C. Synthesis of distributed control and

communication schemes from global LTL speci�cations. In 50th IEEE Conference
on Decision and Control and European Control Conference (Orlando, FL, USA,

December 2011), pp. 2718–2723.

[5] Chu, D.-H., and Jaffar, J. A complete method for symmetry reduction in safety

veri�cation. In International Conference on Computer Aided Veri�cation (Berkeley,

CA, USA, June 2012), pp. 616–633.

[6] Gastin, P., and Oddoux, D. Fast LTL to büchi automata translation. In Interna-
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A PROOF OF THEOREM 5.1
To show this result, it su�ces to show that for Algorithms 1 and 7

it holds that

lim

n→∞
P

(
{Vn

T ∩ Xgoal
, ∅}

)
= 1, (5)

where P(·) stands for the probability of an event. Let S
n

be a set

that collects all states of P that do not belong to the set of nodesVn
T ,

i.e., S
n
= QP \ V

n
T . Let Pn (qnew

P ) denote the probability that the

state qnew

P ∈ S
n

will be the next sample, which can equivalently

be wri�en as:

Pn (qnew

P ) = 1 − P
n
(qnew

P ), (6)

where P
n
(qnew

P ) denotes the probability that the state qnew

P ∈ S
n

will not be the next sample. �e probability P
n
(qnew

P ) can be wri�en

in the following equivalent form:

P
n
(qnew

P ) =
∑

qP ∈S
n
\{qnew

P }

Pn (qP ). (7)

Combining equations (6) and (7), we get

Pn (qnew

P ) = 1 −
∑

qP ∈S
n
\{qnew

P }

Pn (qP ), (8)

Notice that as more samples are taken, i.e., asn →∞, the cardinality

of the set S
n
\ {qnew

P } goes to zero, which implies that

lim

n→∞

∑
qP ∈S

n
\{qnew

P }

Pn (qP ) = 0. (9)

Combining equations (8) and (9), we conclude that for the se-

quence {Pn (qnew

P )}∞n=1
it holds that limn→∞ P

n (qnew

P ) = 1, which

implies that any state qnew

P ∈ S
n

will eventually be sampled with

probability 1, as n → ∞. Moreover, since the cardinality of the

set S
n
\ {qnew

P } goes to zero as n → ∞, this implies that the set

S→qnew

P
de�ned in Section 4.1.2 will not be empty as n → ∞, if

the state qnew

P is reachable.
6

�is means that as n →∞ any state

qnew

P ∈ S
n

will eventually be sampled and added to the setVn+1

T .

Since this result holds for any reachable state in QP , it holds for

any reachable state state in X
goal
⊂ QP , as well. Recall that since

we assume that Problem 1 has a solution, then there are reachable

states in X
goal

for Algorithms 1 and 7. Consequently, we have that

limn→∞ P({V
n
T ∩ Xgoal

, ∅}) = 1, for Algorithms 1 and 7, which

completes the proof.

B PROOF OF THEOREM 5.2
To show that (4) holds, we will show that asn

pre

max
→∞ andnsuf

max
→

∞, the whole reachable state space of the PBA will be sampled

and that every state is connected to the root of the tree through

the path that has the minimum cost. Following the same logic as

in the proof of �eorem 5.1, we conclude that as the number of

iterations n goes to in�nity for Algorithms 1 and 7, the set Vn
T

constructed by these algorithms will contain all reachable states in

QP , i.e.,P
({

limn→∞V
n
T \ R(QP ) = ∅

})
= 1, where R(QP ) ⊆ QP

6
For non-reachable states qnew

P ∈ QP it always holds that S→qnew

P
= ∅ and they will

never be added to Vn
T .
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is a set that collects all reachable states of QP . In what follows, we

assumeVn
T \ R(QP ) = ∅ for the trees constructed by Algorithms 1

and 7, for a su�ciently large n and, consequently, for a su�ciently

large n
pre

max
and nsuf

max
.

Next, we denote by τ ∗ = τ pre,∗[τ suf,∗]ω the optimal motion

plan, i.e, the plan for which it holds J (τ ∗) = J∗. Notice that such

a motion plan can be generated by the existing model checking

method presented in Section 3, since this method utilizes the whole

state-space of the PBA P and all transitions among the states. In

what follows, we will show that the transitions among states that

appear in τ pre,∗
and τ suf,∗

are captured by the set of edges EnT of

the graph GnT constructed for the computation of the pre�x and

su�x structure, respectively, if n
pre

max
→∞ and nsuf

max
→∞. Notice

that this is ensured to happen due to Algorithm 5 that optimizes

the tree structure and the assumption thatVn
T \ R(QP ) = ∅.

Speci�cally, sinceVn
T \ R(QP ) = ∅ we have that all states that

appear in τ ∗ belong to the setVn
T , as well. Next, by construction of

the pre�x part τ pre,∗
it holds that it connects a �nal state, denoted

herea�er by qFP ∈ Q
F
P , to the initial state q0

P through the shortest

path in the graph GP de�ned in Section 3. Notice that sinceVn
T \

R(QP ) = ∅, the �nal state qFP ∈ Q
F
P belongs toVn

T , as well. Next,

recall that a�er the execution of Algorithm 5, the cost CT (qP ) of any

state qP ∈ V
n
T and consequently, of the state qFP will be minimized.

By de�nition of the cost CT (qP ), this means that the �nal state qFP
will be connected to the root q0

P through a path with the minimum

cost J . Consequently, the cost of the path that corresponds to

the pre�x part constructed by Algorithm 1 that connects the �nal

state qFP ∈ F to the root q0

P will be J (τ pre,∗). Following the same

logic, the cost of the respective su�x part, i.e., the cycle around the

�nal state qFP will be J (τ suf,∗). Next, since the optimality criterion

for both the algorithm described in Section 3 and our proposed

algorithm is the same, de�ned as J (τ ) = J (τ pre) + J (τ suf) for a plan

τ = τ pre[τ suf]ω , the resulting plan τ
nsuf

max

npre

max

given by our proposed

algorithm will coincide with τ ∗.

�us, we have proved that J (τ
nsuf

max

npre

max

) = J∗, if Vn
T \ R(QP ) = ∅,

which is true with probability 1 if n
pre

max
→ ∞ and nsuf

max
→ ∞.

Consequently, we have that

P

({
lim

npre

max
→∞,nsuf

max
→∞

J (τ
nsuf

max

npre

max

) = J∗

})
= 1,

which completes the proof.
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