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Abstract— The purpose of this paper is to propose a control
scheme to maximize area coverage and at the same time ensure
reliable communication in networks of mobile robot sensors.
The information that is generated at the sensors depends on
the sensing capabilities of the sensors as well as on the frequency
at which events occur in their vicinity, captured by appropriate
probability density functions. This information is then routed to
a fixed set of access points via a multi-hop network whose links
model the probability that information packets are correctly
decoded at their intended destinations. The proposed hybrid
controller simultaneously optimizes coverage and routing of in-
formation by decoupling control in the continuous and discrete
domains. The robots’ motion is performed in continuous time,
along the negative gradient of a cost function that combines
the coverage objective and a barrier potential used to ensure
satisfaction of desired communication rates. On the other
hand, the communication variables are updated periodically, in
discrete time, by the solution of an optimization problem, and
constitute the switching signal in the continuous motion control.
Simulation studies are conducted verifying the efficiency of the
proposed algorithm.

I. INTRODUCTION

The area coverage problem is related to the development of
a control plan that allows a group of mobile agents equipped
with sensing and communication capabilities to spatially
configure themselves in a way that maximizes the cumulative
probability that events are detected in an area of interest.
While the area coverage problem has recently received a lot
of attention, ensuring that the collected rates of information
can be efficiently relayed to a desired set of access points
for subsequent processing is, to the best of our knowledge,
still an open problem. In this paper, we provide a solution to
this problem of joint coverage and communication control.

The literature related to coverage problems is quite exten-
sive. In [1], the authors propose a distributed controller based
on Lloyd’s algorithm for sensing a convex area. In this work,
it is assumed that the sensing performance degrades as the
distance from the sensor increases. The case where the robots
are equipped with range-limited sensors is discussed in [2].
Distributed controllers for coverage optimization have been
proposed in [3] that minimize the energy needed for sensing
and data processing. Coverage optimization for anisotropic
sensors, whose performance depends on both the distance
from the sensor and its orientation, is studied in [4], [5],
while [6]–[9] discuss coverage of non-convex areas.

The area coverage problems discussed above typically
ignore the requirement that the information collected by the
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robot sensors needs to be routed to a desired set of destina-
tions. Introducing this capability in the system gives a new
twist to the problem on the interface with communication
control and networking. Most of the existing approaches to
communication control of mobile robot networks employ
proximity graphs to model information exchange between
robots and, therefore, consider the problem of preserving
graph connectivity. Such approaches involve, for example,
maximization of the algebraic connectivity of the graph
[10], [11], potential fields that model loss of connectivity
as an obstacle in the free space [12], and distributed hybrid
approaches that decompose control of the discrete graph
from continuous motion of the robots [13]. Distributed al-
gorithms for graph connectivity maintenance have also been
implemented in [14], [15]. A comprehensive survey of this
literature can be found in [16].

A more realistic communication model between mobile
robots, compared to the above graph-theoretic approaches,
is presented in [17], [18] that takes into account the routing
of packets as well as desired bounds on the transmitted
rates. In this model, edges in the communication graph are
associated with the probability that packets delivered through
the corresponding links are correctly decoded by their in-
tended receivers. This formulation gives rise to optimization
problems to determine the desired rates and routes. Related
methods for the control of wireless robot networks are
proposed in [19] and [20], where the wireless channels are
modeled using path loss, shadowing, and multi-path fading,
or evaluated using on-line techniques, respectively.

In this paper, we consider the coverage problem with the
additional requirement that the information collected by the
mobile robot sensors can be efficiently routed to a set of
desired access points. Each agent is responsible for sensing
a region and transmitting sensor measurement information to
a fixed infrastructure of base stations. The rate of transmitted
information depends on the quality of sensing as a function
of the sensing range as well as on the on the probability
that events occur in the vicinity of the sensors, captured
by an appropriate probability density function over the area
of interest. The underlying communication between robots
follows the model proposed in [17], [18]. Our approach
to joint coverage and communication control is based on
decomposing the problem in the continuous and discrete
domains, so that optimal coverage is achieved via continuous
gradient descent on area-based coverage potential functions
that respect communication constraints, while optimal com-
munication is updated periodically via the solution of appro-
priate network optimization problems. In the resulting hybrid
system, the communication variables constitute the switching



signal in the continuous motion controllers. We validate our
approach through non-trivial computer simulations.

A related problem that considers the minimization of the
aggregate information delivered directly, in one hop, from
the robots to a sink node is addressed in [21]. Multi-hop
communication in the context of coverage is considered
in [22] and [23]. Specifically, in [22] the objective is to
minimize the energy consumption in the network, so paths
are sought that ensure this minimum energy objective. In
[23] a joint coverage and graph connectivity framework
is developed for robots that have limited, proximity-based
communication ranges. These approaches differ from the one
proposed here in that we consider more realistic models of
wireless communication that involve routing of information
over a network of varying link reliabilities, and we also
ensure desired information rates that depend on the frequency
with which events occur in the sensors’ vicinity.

The rest of this paper is organized as follows. Section II
presents the coverage problem in the presence of communi-
cation constraints. The proposed control scheme is presented
in section III while its efficiency is examined in section IV
through a simulation study. Conclusive remarks are provided
in the last section.

II. PROBLEM FORMULATION

Assume a team of N mobile robots responsible for the
sensing coverage of a convex and compact area A ⊂ R2

and for the transmission of packets of information to a fixed
set of K access points (APs). The positions of all nodes are
stacked in the vector x = [xT

1 , . . . ,x
T
i , . . . ,x

T
N+K ]T where

i ∈ {1, ..., N} for the robots and i ∈ {N + 1, ..., N +K}
for the APs. The motion of the robots is assumed to be
governed by the following first-order differential equation:

ẋi = ui, i = 1, . . . , N, (1)

where ui ∈ R2 stands for the control input associated with
the i-th robot.

To achieve area coverage, each robot is equipped with an
isotropic sensor whose accuracy is captured by a radially
non-decreasing function that is minimum at the sensor lo-
cation. In this context, a smaller value of f means better
accuracy. In particular, we choose f(xi,q) = ‖q− xi‖2.
Moreover, let φ(q) : A → R+ be an integrable density
function representing the probability that an event takes place
at the point q ∈ A. Then, the coverage problem can be
formulated as follows:

minimize
x

H(x) =
∫
A

max
i=1,...,n

f(xi,q)φ(q)dq. (2)

A common geometric approach to simplify the area cost
function H is via the tessellation of the area of interest into
subregionsWi, i ∈ {1, ..., N} according to a distance metric,
and the assignment of those regions to the robots for sensing
purposes. Considering that

⋃N
i=1Wi = A, this approach

allows us to reformulate the coverage problem (2) as:

minimize
x,W

H(x,W) =

N∑
i=1

∫
Wi

f(xi,q)φ(q)dq, (3)
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Fig. 1. Robot network consisting of two access points (APs) and three
robots (Rs). Robots generate data packets at a rate 0 ≤ ri ≤ 1 and
collaborate to convey this information to the APs. The position function
R(xi,xj) is the reliability of the channel between robots i and j, whereas
Tij denotes the probability that robot i routes packets to robot j. The
product TijR(xi,xj) is the average rate at which packets are successfully
conveyed from robot i to terminal j.

where W = {Wi}Ni=1 denotes the collection of regions Wi.
The problem that we address in this paper is the opti-

mization of the objective H in (3), subject to communication
constraints required to ensure desired information flows from
the sensor robots to the access points (APs). In particular, let
R(xi,xj) be a link reliability metric denoting the probability
that a packet transmitted by the i-th robot is correctly de-
coded by the j-th node. Using R0 to denote the transmission
rate of the terminals’ radios, the effective transmission rate
from i to j is the rate R0R(xi,xj) at which information is
successfully conveyed through this link. To simplify notation
we work with normalized rates by making R0 = 1. This
means that rates are measured as (dimensionless) fractions
of the transmission rate R0. For simplicity, we also assume
all robots use the same transmission rate R0.

Moreover, we denote by ri ∈ [0, 1] the normalized average
rate (information units per unit of time) at which the i-
th robot generates information. Recalling that R0 is the
transmission rate of the terminals’ radios, the effective rate
at which information is generated at terminal i is:

ri(xi,Wi) = R0

∫
Wi

m(xi,q)φ(q)dq, (4)

where m ∈ [0, 1] is any non-increasing function of the
distance ‖q− xi‖ that models the probability that an event
that occurs at a distance ‖q−xi‖ from the sensor is correctly
captured by this sensor.1 If a constant function m is selected
then the sensor quality is the same in the whole region
Wi and ri captures the the cumulative probability that an
event takes place in Wi. Otherwise, ri takes into account
the degradation of the sensing performance over the φ-
weighted area Wi. A possible choice for the function m is
m(xi,q) = e−‖q−xi‖2 .

Packets generated at the terminal i are transmitted to
terminal j according to routing probability Tij representing

1Note that the functions f and m in (2) and (4), respectively, have
essentially the same role. In fact, one could replace the function f in (2)
with m and transform the minimization problem into a maximization. We
choose to keep f in the definition of (2) as this is a standard formulation
in the coverage literature [24].



the probability that the i-th robot selects robot j as a
destination for its transmitted packets. Upon generation or
arrival from another robot, packets are assumed to be stored
in a queue at each robot and they leave this queue provided
they are transmitted and correctly decoded by any other
node j. Thus, the normalized rate at which packets leave the
queue at the i-th node and are conveyed to the j-th node
is TijR(xi,xj), since the transmission and the decoding
process are two independent events. Packets can be conveyed
by the i-th robot to the APs either directly if the probability
TijR(xi,xj) for j ∈ {N + 1, . . . , N +K} is reasonably
large or through a multi-hop communication path; see Figure
1. Then, the average rate at which packets leave the i-th
queue is:

routi =

N+K∑
j=1

TijR(xi,xj). (5)

Similarly, the average rate at which packets arrive at the i-th
queue is:

rini = ri(xi,Wi) +

N∑
j=1

TjiR(xj ,xi). (6)

Note that the APs can only receive information which
explains the upper limits in the sums of equations (5) and
(6). A necessary condition to ensure that the queue at
node i empties infinitely often with probability one is that
rini ≤ routi . Therefore, packets are almost surely eventually
delivered to the APs as long as

ri(xi,Wi) ≤
N+K∑
j=1

TijR(xi,xj)−
N∑
j=1

TjiR(xj ,xi) (7)

for all i ∈ {1, . . . , N}. Incorporating the set of constraints
(7) as well as the probability constraint

∑N+K
j=1 Tij ≤ 1

in the optimization problem (3) we obtain the constrained
coverage problem:

minimize
x,T,W

H(x,W) =

N∑
i=1

∫
Wi

f(xi,q)φ(q)dq (8)

subject to ri(xi,Wi) ≤
N+K∑
j=1

TijR(xi,xj)−
N∑
j=1

TjiR(xj ,xi),

N+K∑
j=1

Tij ≤ 1, 0 ≤ Tij ≤ 1

where T ∈ RN(N+K) is the stack vector of all routing
probabilities Tij , and the constraints in (8) hold for all robots
i ∈ {1, . . . , N}.

Note that (8) is an optimization problem with respect to
the robot positions xi, the routing probabilities Tij , and
the partition of the area in regions Wi. In the absence of
the constraints, it is a well known result that the objective
function H in (8) is minimized if the partition Wi is chosen
to be the Voronoi partition of the space [24], defined as:

Definition 2.1 ( [25]): Voronoi diagrams generated by a
set of points located at {x1, . . . ,xN} is the set V =

{V1, ...,VN} where Vi is called the Voronoi cell of node
i and contains the points that are closer to it than to any
other node:

Vi = {q ∈ A | ‖q− xi‖ ≤ ‖q− xj‖ , ∀j 6= i}.

On the other hand, in the presence of the constraints,
the Voronoi regions are not necessarily feasible for (8) and,
therefore, the feasible optimal partition for the constrained
problem (8) is in general different from the Voronoi partition.
However, if we are able to ensure feasibility of the Voronoi
partition, then this partition will be optimal for (8). In
our problem, this is possible by appropriately selecting the
routing probabilities Tij . In fact, we replace the partition
W in (8) by the Voronoi partition V , and then solve for
routes Tij that satisfy the constraints. This gives rise to the
following problem:

minimize
x,T

H(x,V) =
N∑
i=1

∫
Vi
f(xi,q)φ(q)dq (9)

subject to ri(xi,Vi) ≤
N+K∑
j=1

TijR(xi,xj)−
N∑
j=1

TjiR(xj ,xi),

N+K∑
j=1

Tij ≤ 1, 0 ≤ Tij ≤ 1

where again the constraints in (9) hold for all robots i ∈
{1, . . . , N}. Assume now that the network is initially de-
ployed so that the constraints (7) are satisfied. Then, in this
paper we seek a solution to the following problem:

Problem 1: Determine robot positions xi and routes
{Tij}N+K

j=1 such that coverage is optimized and reliable com-
munication with the APs is guaranteed, as per the solution
of problem (9).

III. COVERAGE AND ROUTING CONTROL

In this section, a hybrid control scheme is proposed
for solving the non-linear optimization problem (9). More
specifically, for fixed values of the routing probabilities
Tij , we design continuous motion controllers ui for the
robots to optimize the coverage objective in (3), while
maintaining feasibility of the routing constraints (7). As the
robots move, the generated rates of information ri and the
channel reliabilities Rij change, so we periodically update
the routing probabilities to account for these changes. The
new routes Tij are found by solving the feasibility problem
(7) for the current values of ri and Rij . The routing variables
Tij constitute the switching signal in the continuous motion
controllers (1).

In particular, let {tk}∞k=0 denote a sequence of time
instances at which the routing probabilities Tij are updated
and define the switching signal affecting the controller of
robot i by

σi(tk) = {Tij(tk)}N+K
j=1 ∪ {Tji(tk)}

N
j=1 . (10)



Algorithm 1 Simultaneous coverage and routing control
Require: Initial position xi (t0) for all robots i;

1: Compute the routing probabilities Tij (t0) by solving the
feasibility problem of constraints (7) for all i;

2: for k = 0 to ∞ do
3: Continuously move every robot i according to the

closed loop system (1)–(12) until time tk+1;
4: When t = tk+1, compute the new routing probabil-

ities Tij (tk+1) by solving the feasibility problem of
constraints (7) for all i;

5: Set k := k + 1;
6: end for

Then, according to the proposed scheme the motion of the
robot i is governed by:

ẋi = ui(x(t), σi(tk)), ∀t ∈ [tk, tk+1). (11)

To optimize coverage while ensuring feasibility of the con-
straints (7) as the robots move, we choose the controller
ui(x(t), σi(tk)) to be the negative gradient:

ui(x(t), σi(tk)) = −∇xiH(x(t))− ε∇xiCi(x(t), σi(tk))
(12)

for ε > 0 a gain, where

Ci(x(t), σi(tk)) =
[(N+K∑

j=1

Tij(tk)R(xi(t),xj(t))

)2

(13)

−
( N∑

j=1

Tji(tk)R(xj(t),xi(t)) + ri(xi(t),Vi(t))
)2]−1

is a barrier potential function that grows unbounded when
the constraint (7) for robot i tends to become violated. This
construction ensures satisfaction of (7) for all time t ∈
[tk, tk+1) when the controller (12) is active. The integrated
hybrid system for joint coverage and routing control is
described in the Algorithm 1.

Observe that the computation of the controller (12) re-
quires the gradients ∇xi

H and ∇xi
ri. As shown in [1], the

gradient of the function H is given by

∇xi
H = 2MVi (xi −CVi) , (14)

where MVi =
∫
Vi φ(q)dq and CVi = 1

MVi

∫
Vi qφ(q)dq

denote the mass and the centroid of the Voronoi cell Vi with
density function φ, respectively. To obtain the gradient of ri
we show the following result:

Proposition 3.1: Given a differentiable function m and a
density function φ, the gradient of the function ri defined in
(4) can be expressed as follows:

∇xi
ri(xi,Vi) =

∫
Vi

∂m(q,xi)

∂xi
φ(q)dq (15)

+

Ei∑
e=1

∫
(qe

i,1,q
e
i,2)

q− xi

‖xj − xi‖
m(q,xi)φ(q)dq

where Ei is the number of edges that constitute the polygonal
boundary ∂Vi of the Voronoi cell Vi and (qe

i,1,q
e
i,2) denotes

the e-th edge in this boundary with end points qe
i,1 and qe

i,2,
i.e., ∂Vi = {(q1

i,1,q
1
i,2), . . . , (q

Ei
i,1,q

Ei
i,2)}.

Proof: Applying the the Leibniz integral rule [26] to
the expression for ri in (4), we have:

∇xi
ri =

∂

∂xi

∫
Vi
m(q,xi)φ(q)dq (16)

=

∫
Vi

∂m(q,xi)

∂xi
φ(q)dq+

∫
∂Vi

nT
i

∂q

∂xi
m(q,xi)φ(q)dq,

where ni =
xj−xi

‖xj−xi‖ is the normal vector pointing outwards
of the edge of Voronoi cell Vi associated with the Delaunay
neighbors i and j.2 Let (qe

i,1,q
e
i,2) denote the e-th edge in

the boundary ∂Vi. Then, the points q that belong to the e-th
edge lie on the line described by the equation:

q =
xi + xj

2
+ aijCij(xj − xi), (17)

where Cij is the skew symmetric rotation matrix

Cij =

[
0 −1
1 0

]
so that Cij(xj−xi) is perpendicular to (xj−xi), and aij ∈
R is a scalar.

Taking the partial derivative of (17) with respect to xi

yields:
∂q

∂xi
=

1

2
I− aijCij , (18)

where I stands for the identity matrix. Multiplying (18) from
the left by nT

i , we have:

nT
i

∂q

∂xi
=

1

2
nT
i − aijnT

i Cij

=
1

2

(xj − xi)
T

‖xj − xi‖
+ aij

(xj − xi)
T

‖xj − xi‖
CT

ij

=
1

2

(xj − xi)
T

‖xj − xi‖
+

1

‖xj − xi‖

(
qT − (xi + xj)

T

2

)
=

qT − xT
i

‖xj − xi‖
, (19)

where in the third equality of (19), we have substituted the
term aij(xj − xi)

TCT
ij from (17).

Substituting equation (19) into (16) yields:

∇xiri =

∫
Vi

∂m(q,xi)

∂xi
φ(q)dq

+

∫
∂Vi

q− xi

‖xj − xi‖
m(q,xi)φ(q)dq. (20)

Finally, taking into account the decomposition of the
boundary of the Voronoi cell into edges ∂Vi =
{(q1

i,1,q
1
i,2), . . . , (q

Ei
i,1,q

Ei
i,2)}, equation (20) gives (15),

which completes the proof of the proposition.

2Two nodes are called Delaunay neighbors if they share an edge of their
corresponding Voronoi cells.



(a) Time t = 0 (b) Time t = 1.5 (c) Time t = 3

Fig. 2. Evolution of a communication network consisting of N = 18 robots (black dots) and K = 1 AP (blue rhombus) during an area coverage task.
Figures 2(a) through 2(c) show the evolution of the system at different time instants. Green lines represent the communication links among the nodes.
Their thickness depends on the value of TijR(xi,xj), i.e., thicker lines capture higher values. A presence of a source in the upper right corner of the
area is captured by a higher density depicted in yellow.

IV. SIMULATION STUDIES

In this section we provide a simulation study of a mobile
robot network consisting of N = 18 robots and K = 1 AP.
The area of interest is defined as a 2 × 2 square and the
density function φ is assumed to be a Gaussian centered
at (2, 2). The function m in (4) is selected to be equal
to e−‖xi−q‖2 and the channel reliability is modeled by the
following function:

R(xi,xj) =


1 if ‖xij‖ < l∑3

p=0 ap ‖xij‖p if l < ‖xij‖ ≤ u
0 if ‖xij‖ > u

,

where ‖xij‖ = ‖xi − xj‖ and the constants ap, p = 0, . . . , 3
are chosen so that R(xi,xj) is a differentiable function [17].

Figure 2 depicts the network at different instances of its
evolution along with the quality of the communication links.
In this simulation study, the limits l, u are selected to be
equal to 0.3 and 0.6 units, respectively. As the diameter of
the region of interest is approximately 4 times the value
of u, multi-hop communication is necessary in order to
cover the whole area. The rates of information transmitted
over the communication links are captured by the quantities
TijR(xi,xj) as described in Section II. In Figure 2, we see
that coverage is achieved, while multi-hop communication
paths are established with the AP.

In Figure 3, the quantity rout− rin is plotted with respect
to time showing that the routing constraints (7) are satisfied
through the network evolution and in Fig 4 the monotonic
evolution of the coverage objective is illustrated. Moreover,
in Figure 5, we show the average rate at which every robot
generates information, where the higher rates correspond to
robots in the upper corner in Figure 2(c), since they are close
to the source.

V. CONCLUSIONS

In this paper, a first centralized approach to the simul-
taneous coverage and communication control problem was
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Fig. 3. Graphical depiction of the difference rout − rin for all robots of
the network.
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Fig. 5. Graphical representation of the average rate ri for all robots of the
network.

presented. The robots were responsible for sensing a convex
area and for reliably relaying packets of information that
depend on their sensing capabilities and a density func-
tion defined over the area of interest, to a set of APs.
The routing of packets was performed through a multi-hop
network modeled so that its communication links represent
channel reliabilities. In our approach, the coverage and the
routing problem were addressed jointly, leading to a hybrid
system. Particularly, the motion control was performed in
the continuous time domain ensuring coverage optimization
and satisfaction of the communication constraints, while
communication control was implemented at discrete time
instances through optimization of the routing variables that
constituted the switching signal in the continuous robot
motion. Simulation studies illustrated the efficacy of the
proposed control scheme.
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