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Abstract— Metabolic networks describe the set of biochem-
ical reactions and regulatory interactions of metabolism that
govern the phenotypical properties of a cell. Analysis of such
networks is critical not only to promote biological knowledge,
but also in drug discovery, where it can be used to identify
and knockout the targeted pathways. Flux Balance Analysis
(FBA) has been widely used to study metabolic networks. This
powerful technique employs the reaction stoichiometries and
reversibility constraints along with experimental measurements
of phenotypical properties of the cell, e.g., biomass composition
or ATP synthesis, to compute the fluxes of metabolites that
are best manifested in the cell. Although FBA has been shown
to satisfactorily capture cell behavior, its performance could be
significantly improved if measurement uncertainty is introduced
in the models. In this paper we propose Robust Flux Balance
Analysis (RFBA) to determine optimal fluxes of metabolites
for all phenotypical measurements in a given uncertainty set.
We derive a least squares bi-criterion approximation of the
uncertain problem and, using the S-procedure and tools from
matrix analysis, we show that this is equivalent to a semidef-
inite program that can be solved optimally using available
techniques. We illustrate our approach on synthetic metabolic
networks and discuss the effect of regularization on the final
solutions. Due to its convex nature, our approach can be applied
to genome-scale networks.

I. INTRODUCTION

Metabolic networks map the biochemical reactions in a
living cell to the flow of various chemical substances in the
cell, which are called metabolites. The metabolic network of
an organism can be thought of as production lines in a large
scale biochemical plant. It captures the totality of metabolic
reactions in which chemical substances are consumed to
produce metabolic products. Analysis of such networks is
critical not only to promote biological knowledge, but also in
drug discovery, where it can be used to identify and knockout
the targeted pathways.

Metabolic Flux Balance Analysis (FBA) [1], [2] studies
the feasible and optimal reaction fluxes through the net-
work at steady state [3], subject to structural, reversibility,
and flux capacity constraints [4], [5]. Structural constraints
arise from the stoichiometry of the metabolic reactions.
(Ir)reversibility constraints are thermodynamic in nature and
capture the direction in which chemical substances flow
within a reaction. Finally, flux capacity constraints can be
derived from the availability of nutrients, the existence of a
knockout, and biochemical data on the maximum throughput
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of enzymes. Given such constraints, the flux of chemical
substrates through the network is limited to a feasible region
defined by a convex polytope, and the objective of FBA is to
determine a feasible set of fluxes that is best manifested in
the biological system under consideration. The assumption
commonly made is that the metabolic system exhibits a
metabolic state that is optimal in terms of cellular growth [4],
[6]. Cellular growth can be represented by accumulation of
cellular biomass, which is composed of cellular metabolites.
If the composition of the cellular biomass is known, cellular
growth can be captured by an artificial biomass reaction
involving metabolites at stoichiometries defined by their
contribution in biomass composition. Therefore, calculation
of the optimal growth rate and the corresponding metabolic
fluxes can be posed as a Linear Program (LP) [1], [2].

To date, robustness analysis of metabolic networks has
primarily focused on the response of the network to structural
changes, such as gene knockouts or gene deletions, and has
traditionally relied on “brute force” FBA applied to different
knockout combinations [7], [8]. Minimal cutset algorithms
for knockout experiment design were proposed in [9], [10]
and were recently extended to arbitrarily large networks
[11]. The related literature also includes mixed integer linear
programming approaches [12], [13], as well as a convex
relaxations that scale better with the network size [14].

In this paper, we switch gears and study robustness of
FBA to perturbations in the biomass composition and the
metabolic flux capacities. These quantities are typically
subject to measurement uncertainty, which raises the need
for new Robust FBA (RFBA) techniques that return flux
distributions that are optimal for worst case measurements.
An important technical challenge in introducing uncertainty
in FBA is that this typically appears in the stoichiometric
equality constraints of the original LP, in the form of
uncertain stoichiometric coefficients of an artificial biomass
reaction [15], [16]. For this, we propose a least squares
approximation of the original uncertain LP that results in a
bi-criterion optimization problem. Using the S-procedure and
tools from matrix analysis, we show that this approximation
is equivalent to a semidefinite optimization problem that
can be solved optimally using available techniques [17]. We
illustrate our approach on synthetic data and study the effect
of regularization on the final solution.

This paper is organized as follows: In Section II we
describe FBA for maximization of cellular growth. In Sec-
tion III we introduce measurement uncertainty and develop
RFBA based on a least squares approximation of the original
uncertain LP. We illustrate our approach on synthetic data in
Section IV, and study the effect of regularization.



II. FLUX BALANCE ANALYSIS (FBA)

A. Metabolic Network Modeling at Steady State

Consider a metabolic network with n metabolites and m
reactions. The k-th reaction can be written as

α1,kA1 + · · ·+ αn,kAn → β1,kA1 + · · ·+ βn,kAn, (1)

where Ai denotes the i-th metabolite, and α•,k, β•,k are non-
negative integers that denote the stoichiometric coefficients
of the k-th reaction. Obviously, if Ai is not involved as a
reactant in the k-th reaction, then αi,k = 0. Similarly, if
Ai is not involved as a product in the k-th reaction, then
βi,k = 0. In regular reactions we have

α•,k 6= 0, (2a)
β•,k 6= 0, (2b)

which means that there is always some reactant and prod-
uct associated with the reaction. Here we assume that all
reactions are irreversible. This is done without any loss of
generality, since reversible reactions can be written as two
opposite irreversible reactions.

In addition to the regular reactions, we also have uptake
reactions. These are reactions that can be written as

∗ → Ai, (3)

and model the uptake of metabolite Ai from the environment.
Uptake reactions can be also expressed as in (1), without the
restriction of (2a).

If we denote the concentration of the i-th metabolite as xi
and the rate of the k-th reaction as ωk, then we can show
that x and ω are related through

dx

dt
= (β − α)ω, ω ≥ 0 (4)

where α and β are the n × m matrices formed by the
coefficients of (1), and the symbol ≥ denotes element-wise
inequality.

In microbes, the transient dynamics of the metabolic
network are faster than both cellular growth rates and the dy-
namic changes in the organism’s environment. In analyzing
the network, thus, it is assumed that it is in its steady-state.
In steady-state, the rates dx/dt represent the accumulation
of metabolites and must be element-wise nonnegative. This
is because the cell can act as a perpetual sink, but not as a
perpetual source (without any uptake). Thus, in steady-state
condition, the following relations hold:

(β − α)ω − dx

dt
= 0, (5a)

ω ≥ 0,
dx

dt
≥ 0. (5b)

We can rewrite (5) in a more compact form by introducing
pseudo-reactions as sinks. These are reactions that can be
written as

Ai → ∗. (6)

We associate a sink with every metabolite. Thus, there are
n pseudo-reactions. Equation (5) can, therefore, be written
compactly as [14]

Sv = 0, v ≥ 0, (7)

where

S ,
[
β − α −I

]
∈ Zn×(m+n)

+ , v ,

[
ω
dx
dt

]
∈ Rm+n.

(8)
Since, typically, the number of reactions is greater than

the number of metabolites, i.e., S is a wide matrix, the
system (7) may have multiple solutions corresponding to flux
distributions representing different metabolic states. There-
fore, the null space, or the set of all feasible flux distribu-
tions, represents the capabilities of the metabolic genotype.
The transport fluxes represent environmental conditions that,
along with the genotype, define the metabolic state. However,
obtaining all possible metabolic states for any genotype-
environment interaction depends on how well the genotype
and environmental factors are characterized [18].

B. Maximization of Cellular Growth

The objective of Flux Balance Analysis (FBA) is to
determine a feasible metabolic state that is best manifested in
the biological system under consideration. The assumption
commonly made is that the metabolic system exhibits a
metabolic state that is optimal under some criteria. In the
case of cell growth, the objective is biomass production,
i.e., the rate at which metabolic compounds are converted
into biomass constituents, such as nucleic acids, proteins
and lipids. Biomass production can be mathematically rep-
resented by an artificial biomass reaction [15], [16]

n∑
i=1

biAi
ωb−→ Biomass (9)

that consumes precursor metabolites Ai at stoichiometries
bi that simulate biomass production. The biomass reaction
is based on experimental measurements of the biomass
components bi contained in the vector b and is scaled so
that the flux through it is equal to the exponential growth
rate µ = ln(2)/T of the organism, where T > 0 is the
doubling time. Reaction (9) introduces an additional column
in the stoichiometric matrix, which becomes

Sb ,
[
β − α −b −I

]
∈ Rn×(n+m+1)

+ , (10)

with corresponding flux vector

vb ,
[
ωT ωb

dxT

dt

]T
∈ Rn+m+1, (11)

where ωb is the rate of the artificial biomass reaction (9).
Therefore, we can define an optimization problem to deter-
mine the metabolic fluxes vb that ensure desired cell growth,
dictated by precursor requirements contained in b, as

maximize eTb vb
subject to Sbvb = 0

0 ≤ vb ≤ vmax
, (12)



where eb is a column vector with all entries equal to
zero except for the (m + 1)-st entry that is equal to one
and corresponds to the position of ωb in vb (c.f. (11)). In
problem (12), we have also included flux capacities vmax,
which in the case of the precursors correspond to their
actual experimentally measured concentrations for given cell
growth. If no such knowledge is available, the fluxes can be
unconstrained.

III. ROBUST FLUX BALANCE ANALYSIS (RFBA)

The experimentally measured biomass composition vector
b ∈ Rn+ and the flux capacities vmax ∈ Rn+m+1

+ are
typically subject to uncertainty. In this section we introduce
measurement uncertainty in (12) and propose a reformulation
of the FBA problem that is robust with respect to worst case
parameter uncertainty.

Observe first that parameter uncertainty enters (12) in
the equality constraints Sbvb = 0, which poses technical
difficulties in finding a unique flux distribution vb that
satisfies these constraints for all possible evaluations of b
within an uncertainty set. Therefore, we approximate (12)
by the least squares bi-criterion optimization problem

minimize ε‖Sbvb‖2 − (1− ε)eTb vb
subject to 0 ≤ vb ≤ vmax , (13)

where ε ∈ [0, 1] is a tuning (regularization) parameter [17]
that regulates the relative contribution of the two objectives
‖Sbvb‖2 and −eTb vb in (13). In problem (13) we trade
exact satisfaction of the stoichiomertic equality constraints
for maximization of biomass. In choosing ε, we should
ensure that equality violation is not too large, i.e., that the
stoichiometric error ‖Sbvb‖2 is small enough. We will study
sensitivity of the solution of problem (13) to the tuning
parameter ε in Section IV.

A. Uncertainty in the Biomass Composition

To model the uncertainty in the biomass composition vec-
tor b ∈ Rn+, assume that there are p available measurements
{bi}pi=1 ∈ Rn+ of the biomass composition and for every
ξ ∈ Rp with ‖ξ‖2 ≤ ρ let

b(ξ) = b0 +

p∑
i=1

ξibi

where b0 = 1
p

∑p
i=1 bi denotes a mean biomass composition

vector (b0 can also be taken the zero vector 0n).1 Then, the
stoichiometric matrix Sb becomes

Sb(ξ) = Sb0 +

p∑
i=1

ξiSbi ,

1Hereafter, bi will denote the i-th measurement of the biomass composi-
tion vector, rather than the stoichiometric coefficient of the i-th metabolite in
the biomass reaction previously defined in (9). The stoichiometric coefficient
of the j-th metabolite of the i-th measurement of the biomass composition
vector will be denoted by bij .

with Sbi defined as in (10) for biomass composition vector bi.
Therefore, we can define the robust counterpart of problem
(13) by

minimize εr(Sb, vb, ρ)− (1− ε)eTb vb
subject to 0 ≤ vb ≤ vmax . (14)

where
r(Sb, vb, ρ) = max

‖ξ‖2≤ρ
‖Sb(ξ)vb‖2 (15)

denotes the worst case stoichiometric error. Without the
presence of the objective eTb vb, problem (14) is also known
as a Robust Least Squares problem [19], [20]. Let

M(vb) =
[
Sb1vb . . . Sbpvb

]
and define the quantities

F =MT (vb)M(vb), g =MT (vb)Sb0vb, h = ‖Sb0vb‖22.
Then,

‖Sb(ξ)vb‖22 =

∥∥∥∥∥Sb0vb +
p∑
i=1

ξiSbivb

∥∥∥∥∥
2

2

=
∥∥Sb0vb + [Sb1vb . . . Sbpvb

]
ξ
∥∥2
2

= (Sb0vb +M(vb)ξ)
T
(Sb0vb +M(vb)ξ)

= h+ gT ξ + ξT g + ξTFξ

=
[
1 ξT

] [h gT

g F

] [
1
ξ

]
,

which gives

r2(Sb, vb, ρ) = max
‖ξ‖2≤ρ

[
1 ξT

] [h gT

g F

] [
1
ξ

]
.

Therefore, minimizing r(Sb, vb, ρ) is equivalent to minimiz-
ing λ ≥ 0 such that[

1 ξT
] [h gT

g F

] [
1
ξ

]
≤ λ

for all possible ξ ∈ Rp with ξT ξ ≤ ρ2. In other words, we
need to find a minimum scalar λ and a vector vb such that[

1 ξT
] [λ− h −gT
−g −F

] [
1
ξ

]
≥ 0

whenever [
1 ξT

] [ρ2 0
0 −I

] [
1
ξ

]
≥ 0,

for all ξ ∈ Rp. By the S-procedure, this happens if and only
if [

λ− h −gT
−g −F

]
� τ

[
ρ2 0
0 −I

]
,

for some τ ≥ 0.2 Therefore, problem (14) can be equivalently
written as

minimize ελ− (1− ε)eTb vb
subject to

[
λ− ρ2τ − h −gT
−g τI − F

]
� 0

0 ≤ vb ≤ vmax

. (16)

2We write X � 0 if and only if the symmetric matrix X ∈ Sn belongs
in the positive semidefinite cone, defined by Sn+ = {X ∈ Sn | X � 0}.



Since [
λ− ρ2τ − ‖Sb0vb‖22 −(MT (vb)Sb0vb)

T

−MT (vb)Sb0vb τI −MT (vb)M(vb)

]
=

[
λ− ρ2τ 0

0 τI

]
−
[
(Sb0vb)

T

MT (vb)

]
I
[
Sb0vb M(vb)

]
,

we can apply Schur complements to problem (16) to obtain

minimize ελ− (1− ε)eTb vb
subject to F(λ, τ, vb) � 0

0 ≤ ρ2τ ≤ λ
0 ≤ vb ≤ vmax

, (17)

where

F(λ, τ, vb) =

 λ− ρ2τ 0 (Sb0vb)
T

0 τI MT (vb)
Sb0vb M(vb) I

 . (18)

Problem (17) is a semidefinite program in variables (λ, τ, vb)
and can be solved using available techniques [17], [21].

B. Uncertainty in the Metabolic Flux Capacities

To introduce uncertainty in the flux capacities vmax ∈
Rn+m+1

+ , assume that there are q available measurements
{vkmax}qk=1 ∈ Rn+m+1

+ , and for every ζ ∈ Rq with ‖ζ‖2 ≤ η
and every flux i = 1, . . . , n+m+ 2 let

eTi vmax(ζ) = eTi v
0
max +

q∑
k=1

ζke
T
i v

k
max,

where v0max = 1
q

∑q
k=1 v

k
max and ei ∈ Rn+m+1 is a column

vector with all entries equal to zero except for the i-th entry
that is equal to one. The inner product of vmax with ei
corresponds to the capacity of the i-th flux. Therefore, (17)
can be reformulated to account for uncertainty in the flux
capacities as

minimize ελ− (1− ε)eTb vb
subject to F(λ, τ, vb) � 0

0 ≤ ρ2τ ≤ λ
0 ≤ eTi vb ≤ inf‖ζ‖2≤η{eTi vmax(ζ)}

. (19)

for all fluxes i = 1, . . . , n + m + 2. Let N =[
v1max . . . vqmax

]
and observe that

inf
‖ζ‖2≤η

{eTi vmax(ζ)} = eTi v
0
max + inf

‖ζ‖2≤η
{eTi Nζ}

= eTi v
0
max + η inf

‖ζ‖2≤η
{eTi N(ζ/η)}

= eTi v
0
max + η inf

‖ζ‖2≤1
{eTi Nζ}

= eTi v
0
max − η sup

‖ζ‖2≤1
{−eTi Nζ}

= eTi v
0
max − η‖NT ei‖∗,

where ‖u‖∗ = sup{uTx | ‖x‖2 ≤ 1} denotes the dual norm
of u, which can be interpreted as the operator norm of zT if
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Fig. 1. Metabolic network consisting of 10 metabolites, 5 reactions, and one
artificial biomass reaction. Shown are also reaction stoichiometries. Arrows
indicate reaction direction one of the two reaction directions, considered
positive. The artificial biomass reaction is indicated in red color, while the
uptake reactions are shown in blue.

it is considered a 1× n matrix.3 Substituting in (19) we get

minimize ελ− (1− ε)eTb vb
subject to F(λ, τ, vb) � 0

0 ≤ ρ2τ ≤ λ
0 ≤ vb ≤ v0max − ηvec

(
{‖NT ei‖∗}n+m+2

i=1

) ,
(20)

where vec({x1, . . . , xk}) denotes a column vector with el-
ements x1, . . . , xk. Problem (20) is a semidefinite program
and can be solved using available techniques [17], [21].

IV. SIMULATION RESULTS

In this section, we illustrate problem (20) on synthetic
metabolic networks and study the effect of regularization
(tuning parameter ε) on the final solution. In particular, con-
sider a metabolic network consisting of n = 10 metabolites
labeled {Ai}10i=1, and m = 5 reversible reactions

R1 : 2A1 +A2 → A4, (21a)
R2 : A3 +A4 → A5, (21b)
R3 : A1 + 2A5 → 2A6 +A7, (21c)
R4 : 2A3 +A6 +A7 → 2A8 +A9, (21d)
R5 : 2A4 +A9 → A10, (21e)

three irreversible uptake reactions

R6 : ∗ → A1, R7 : ∗ → A2, R8 : ∗ → A3, (22)

3Note that inf{X} = − sup{−X} for any set X , where −X =
{−x | x ∈ X}.



TABLE I
STOICHIOMETRIC MATRIX [ β − α | − b ] FOR THE METABOLIC NETWORK SHOWN IN FIG. 1. THE REACTIONS R−

• INDICATE OPPOSITE

DIRECTIONALITY WITH RESPECT TO THE REACTIONS R• , AND ARE INTRODUCED TO MODEL REVERSIBILITY (21). REACTIONS R6 THROUGH R8

MODEL UPTAKE OF METABOLITES FROM THE ENVIRONMENT (22), WHILE REACTION R9 CORRESPONDS TO THE ARTIFICIAL BIOMASS REACTION (23).

R1 R2 R3 R4 R5 R−
1 R−

2 R−
3 R−

4 R−
5 R6 R7 R8 R9

A1 -2 0 -1 0 0 2 0 1 0 0 1 0 0 0
A2 -1 0 0 0 0 1 0 0 0 0 0 1 0 0
A3 0 -1 0 -2 0 0 -1 0 -2 0 0 0 1 0
A4 1 -1 0 0 -2 -1 1 0 0 2 0 0 0 0
A5 0 1 -2 0 0 0 -1 2 0 0 0 0 0 −µb5
A6 0 0 2 -1 0 0 0 -2 1 0 0 0 0 −µb6
A7 0 0 1 -1 0 0 0 -1 1 0 0 0 0 0
A8 0 0 0 2 0 0 0 0 -2 0 0 0 0 −µb8
A9 0 0 0 1 -1 0 0 0 -1 1 0 0 0 −µb9
A10 0 0 0 0 1 0 0 0 0 -1 0 0 0 0

and an artificial biomass reaction

R9 : bi,5A5 + bi,6A6 + bi,8A8 + bi,9A9 → Biomass (23)

with bi =
[
0 0 0 0 bi,5 bi,6 0 bi,8 bi,9 0

]T
the i-th measurement of the biomass composition vector, for
i = 1, . . . , p with p = 10 (Fig. 1). We assume that bi has
mean [0 0 0 0 3 1 0 2 1 0]T and that every one of its
entries is subject to zero mean and 0.5 variance gaussian
noise. Every biomass composition vector bi is normalized
so that bi,5 + bi,6 + bi,8 + bi,9 = 1. Let T = 1h be the
doubling time of the organism, so that the growth rate is
µ = ln(2)/T = 0.69h−1. Then, the stoichiometric matrix
of the network under consideration is shown in Table I.
Furthermore, we assume that all fluxes are unconstrained,
except for the uptake fluxes of reactions R6, R7 and R8 that
are upper bounded by 0.1. For simplicity, we assume that
these bounds are deterministic.

We evaluated the performance problem (20) for different
values of the tuning parameter ε ∈ [0, 1] and for ρ = 1.5.
Simulations were performed in MATLAB using the cvx
toolbox for disciplined convex programming [21]. Fig. 2
illustrates as a function of the tuning parameter ε ∈ [0, 1] (a)
the biomass objective eTb vb, (b) the upper bound λ on the
worst case stoichiometric error r(Sb, vb, ρ) defined in (15),
and (c) the stoichiometric errors ‖Sbivb‖2 for all measured
biomass compositions bi, with i = 1, . . . , p. Observe that the
values of ‖Sbivb‖2 are always upper bounded by λ, since
ρ = 1.5 ≥ 1. In other words, the set {‖Sb(ξ)vb‖2 | ‖ξ‖2 ≤
ρ} includes the errors ‖Sbivb‖2 for all measured biomass
compositions (15). This is not necessarily the case if ρ < 1.

For ε = 0 the stoichiometric equality constraints are
ineffective and, therefore, the resulting value of eTb vb has
no biological meaning. We are interested in regions of the
plot where λ is minimum and eTb vb is maximum. Note that
λ can not become identically zero, since there does not exist
a unique nontrivial flux vector vb for which ‖Sbvb‖2 = 0 for
all biomass compositions b ∈ {b0 +

∑p
i=1 ξibi | ‖ξ‖2 ≤ ρ}.

From Fig. 2 we see that λ is almost at its minimum for
ε ≥ 0.85. Since eTb vb decreases rapidly as ε increases beyond
0.85, we choose ε = 0.85 to obtain eTb vb = 0.1593. The
flux vector vb obtained by the solution of problem (20) for
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Fig. 2. Plots of (a) the biomass objective eTb vb, (b) the upper bound λ
on the worst case stoichiometric error r(Sb, vb, ρ) defined in (15), and (c)
the stoichiometric errors ‖Sbivb‖2 for all measured biomass composition
vectors bi, with i = 1, . . . , p, with respect to the tuning parameter ε ∈
[0, 1]. The y-axis is in log-scale.

e = 0.85 is shown in Table II. Note that for this value of
ε = 0.85 there is maximum uptake of metabolites A1 and A3

(fluxes ω6 and ω8) equal to the upper bound 0.1, which is
distributed among the five reactions to result in metabolites
that maximize biomass. All steady state metabolite con-
centrations are effectively constant (dxi/dt = 0), except
for the concentrations of A2 and A9 that slightly increase.
This increase is due to the stoichiometeries in the network
that prevent these metabolites from being fully consumed
to produce biomass. The values of the errors ‖Sbivb‖2 for
i = 1, . . . , p are small, ranging between 0.01–0.02 in value.

Remark 4.1 (ε→ 1): Observe that as ε→ 1, both eTb vb →
0 and ‖Sbivb‖2 → 0, for all measurements i = 1, . . . , p
(Fig. 2). This behavior is justified, since as ε → 1 the
biomass objective eTb vb becomes effectively inactive and
the optimization problem (20) determines fluxes vb to only
minimize the worst case stoichiometric error r(Sb, vb, ρ).
Numerically, a sparse flux vector vb as the one shown
in Table II is not optimal as a minimizer of r(Sb, vb, ρ).
In fact, if ε = 1, the flux vector vb returned by (20)
for the metabolic network of Fig. 1 is rather dense with



TABLE II
FLUX VECTOR vb DETERMINED BY PROBLEM (20) FOR THE NETWORK

ILLUSTRATED IN FIG. 1 AND FOR TUNING PARAMETER ε = 0.85. THE

FLUXES ω1 THROUGH ωb ARE POSITIVE IF THEIR DIRECTION AGREES

WITH REACTIONS (21), (22) AND (23), AS SHOWN IN FIG. 1.

Flux Value Flux Value
ω1 = ω(R1) 0.0448 dx1/dt 0.0000
ω2 = ω(R2) 0.0701 dx2/dt 0.0315
ω3 = ω(R3) 0.0129 dx3/dt 0.0000
ω4 = ω(R4) 0.0156 dx4/dt 0.0000
ω5 = ω(R5) –0.0101 dx5/dt 0.0000
ω6 = ω(R6) 0.1000 dx6/dt 0.0000
ω7 = ω(R7) 0.0764 dx7/dt 0.0000
ω8 = ω(R8) 0.1000 dx8/dt 0.0000

Biomass Reaction dx9/dt 0.0081
ωb = ω(R9) 0.1593 dx10/dt 0.0000

TABLE III
FLUX VECTOR vb DETERMINED BY PROBLEM (20) FOR THE NETWORK

ILLUSTRATED IN FIG. 1 AND FOR TUNING PARAMETER ε = 1.00. THE

FLUXES ω1 THROUGH ωb ARE POSITIVE IF THEIR DIRECTION AGREES

WITH REACTIONS (21), (22) AND (23), AS SHOWN IN FIG. 1.

Flux Value Flux Value
ω1 = ω(R1) 0.0327 dx1/dt 0.0131
ω2 = ω(R2) 0.0234 dx2/dt 0.0400
ω3 = ω(R3) 0.0091 dx3/dt 0.0383
ω4 = ω(R4) 0.0057 dx4/dt 0.0058
ω5 = ω(R5) 0.0018 dx5/dt 0.0052
ω6 = ω(R6) 0.0876 dx6/dt 0.0125
ω7 = ω(R7) 0.0727 dx7/dt 0.0034
ω8 = ω(R8) 0.0730 dx8/dt 0.0114

Biomass Reaction dx9/dt 0.0039
ωb = ω(R9) 5.27 · 10−6 dx10/dt 0.0018

very little biomass is produced (Table III). As expected, all
resources are consumed to produce metabolites A1, . . . , A10

and obtain a dense flux vector vb. The stoichiometric errors
{‖Sbivb‖2}pi=1 in this case are of the order of 10−7, as
expected (but still nonzero).

V. CONCLUSIONS

Metabolic Flux Balance Analysis (FBA) is a powerful
optimization-based technique that studies the feasible and
optimal reaction fluxes through the network at steady state,
subject to structural, reversibility, and flux capacity con-
straints. Among the large number of possible flux distribu-
tions, FBA determines the one that is best manifested in
the system under consideration. The assumption commonly
made is that the metabolic systems exhibits a metabolic state
that is optimal in terms of cellular growth, which is typically
represented by accumulation of cellular biomass.

In this paper, we proposed Robust Flux Balance Analysis
(RFBA) to account for uncertainty in the biomass composi-
tion and flux capacities. We showed that flux distributions
that are robust to worst case parameter uncertainty can

be obtained by the solution of a bi-criterion semidefinite
program, which can be solved to optimality using available
techniques and scales well to large networks due its convex
nature. We illustrated our approach on synthetic data and
studied the effect of regularization on the final solution.
Future work involves application of our method to real
experimental data and comparison with existing techniques.
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