
Distributed Intermittent Communication Control
of Mobile Robot Networks under Time-Critical Dynamic Tasks

Yiannis Kantaros, and Michael M. Zavlanos

Abstract— In this paper, we develop a distributed intermittent
communication framework for teams of mobile robots that are
responsible for accomplishing time-critical dynamic tasks and
sharing the collected information with all other robots and
possibly also with a user. Specifically, we consider situations
where the robot communication capabilities are not sufficient
to maintain reliable and connected networks while the robots
move to accomplish their tasks. In this case, intermittent
communication protocols are necessary that allow the robots to
temporarily disconnect from the network in order to accomplish
their tasks free of communication constraints. We assume that
the robots can only communicate with each other when they
meet at common locations in space. Our proposed distributed
control framework determines offline schedules of communi-
cation events and integrates them online with task planning.
The resulting paths ensure task accomplishment and exchange
of information among robots infinitely often at locations that
minimize a user-specified metric. Simulation results corroborate
the proposed distributed control framework.

I. INTRODUCTION

Recently, there has been a large amount of work focused
on designing controllers that ensure point-to-point or end-
to-end network connectivity for all time. Such controllers
either rely on graph theory to model robot communication
[1]–[3] or employ more realistic communication models that
take into account path loss, shadowing, and multi-path fading
as well as optimal routing decisions for desired information
rates [4]–[6]. Nevertheless, due to the uncertainty in the wire-
less channel, that affects signal strength in an unpredictable
way, it is often impossible to ensure all-time connectivity
in practice. Moreover, maintaining all-time connectivity can
severely restrict the robots from accomplishing their tasks,
as motion planning is always constrained by network con-
nectivity constraints. Therefore, a much preferred solution is
to allow robots to communicate in an intermittent fashion
and operate in disconnect mode the rest of the time.

In this paper, we consider robots that are responsible for
accomplishing high-level tasks that are (i) dynamic, i.e.,
the task specifications can change over time, and (ii) time-
critical in the sense that the robots should not hold onto the
information they collect as they navigate the workspace for
a long time; instead, they need to communicate frequently
enough, according to desired specifications. We assume that
the robots have limited communication ranges and, there-
fore, they can only communicate when they are physically

Yiannis Kantaros and Michael M. Zavlanos are with the Department of
Mechanical Engineering and Materials Science, Duke University, Durham,
NC 27708, USA. {yiannis.kantaros, michael.zavlanos}@duke.edu. This
work is supported in part by NSF under grants CNS #1261828 and CNS
#1302284.

close to each other. Motivated by that, we propose a novel
distributed task planning and intermittent communication
framework that allows robots to temporarily disconnect from
the network to accomplish their assigned tasks free of
communication constraints, but at the same time ensures that
the communication network is connected over time so that
information can be propagated in the network intermittently,
in a multi-hop fashion. Our proposed distributed control
framework constructs offline schedules of communication
events that dictate how the robots will communicate and
integrates them online with task planning. The resulting paths
ensure task accomplishment and exchange of information
among robots infinitely often at locations that minimize a
user-specified metric, such as traveled distance.

The most relevant works to the one proposed here are
recent works by the authors [7]–[11]. Specifically, [7] pro-
poses an asynchronous distributed intermittent communica-
tion framework that is a special case of the one proposed
here in that every robot belongs to exactly two teams and the
robots in every team can only meet at a single predetermined
location. This framework is extended in [8], where robots
can belong to any number of teams and every team can
select among multiple locations to meet, same as in the work
considered here. Nevertheless, neither of the approaches
in [7], [8] consider concurrent task planning. Intermittent
communication control and task planning is considered in
[9]. Nevertheless, this approach is centralized and does not
scale well with the number of robots. A distributed offline
approach for this problem is presented in [10] that can only
handle periodic tasks captured by Linear Temporal Logic
(LTL) formulas. Also, optimality guarantees are provided
in [10] by exploiting the periodic structure of the designed
paths, which do not exist in this work. Nevertheless, our
proposed algorithm can handle arbitrary dynamic tasks and
also allows the robots in every team to arrive at the selected
communication point simultaneously, avoiding in this way
waiting delays, which is not the case in [10]. A distributed
online approach to this problem for LTL tasks is proposed
in [11]. Nevertheless, the method proposed here, is more
general in that it can handle the data gathering tasks and
the two-hop star communication topology in [11] that con-
siders information flow only to the root/user. In fact, in
the proposed method, information can flow intermittently
between any pair of robots and possibly a user in a multi-hop
fashion. Other relevant methods are presented in [12], [13].
However, these methods either impose strong restrictions on
the communication pattern that can be achieved or they do
not consider concurrent task planning. We provide theoret-

ical guarantees and numerical simulations that support the
proposed framework. To the best of our knowledge, this is
the first distributed and online intermittent communication
framework that can handle arbitrary time-critical dynamic
tasksx. Also, the proposed framework scales well with the
size of the network.

The rest of this paper is organized as follows. The problem
formulation is described in Section II. In Section III se-
quences of communication events are defined that ensure that
the communication network is connected over time infinitely
often. The proposed distributed integrated task planning
and intermittent communication framework is presented in
Section IV. Simulation results are included in Section VI.

II. PROBLEM FORMULATION

Consider N ≥ 1 mobile robots operating in a workspace
W ⊂ Rd, d = 2, 3, and let ẋi(t) = fi(xi(t),ui(t)) denote
the equations of motion of robot i, where xi(t) ∈ Rd and
ui(t) ∈ Rd are the position and control input of robot i,
respectively, at time t ≥ 0. Let N = {1, . . . , N} denote the
set of all robots.

We assume that the robots have to accomplish
a time-critical dynamic task, defined as Hi =
{p1

i , . . . ,p
hi
i , . . . ,p

Hi
i }, where phi

i ∈ W , are waypoints
associated with locations in space where the tasks take
place, hi ∈ {1, . . . ,Hi}, and Hi ∈ N+. Note that we
impose no restriction on the structure of the sequence
Hi, i.e., it can be periodic or aperiodic, and Hi can be
finite or infinite. Moreover, we assume that the tasks
Hi are not a priori known to the robots and instead,
they are revealed over time. Specifically, at any time
t, every robot i has access to a part of the task Hi,
defined as Hcur

i (t) = {pξ
0
i (t)
i , . . . ,p

ξfi (t)
i } ⊆ Hi, where

ξ0i (t) through ξfi (t) are consecutive indices to {1, . . . ,Hi}
and point to the entries in Hi that are the first and the
last entries in Hcur

i (t); see also Figure 1(a). The current
tasks Hcur

i (t) can be updated as the robots navigate the
workspace, by adding to them additional waypoints from
Hi. Specifically, the current task Hcur

i (t+) of robot i at
time t+, right after an update at time t, is constructed
as Hcur

i (t+) = Hcur
i (t) ∪ {pξ

f
i (t)+1
i , . . . ,p

ξfi (t
+)

i } ⊆ Hi.
The time instants t when the current tasks Hcur

i (t) are
updated, as well as, and the corresponding the new
task specifications/waypoints {pξ

f
i (t)+1
i , . . . ,p

ξfi (t
+)

i } are
determined on-line and are not known a priori. Also, to
ensure that Hcur

i (t) are always finite, every robot i deletes
from Hcur

i (t) all waypoints that they have already visited.
Moreover, the assigned tasks are time-critical in the sense

that the information collected by the robots as they visit
waypoints included in Hcur

i (t) is time-critical and, as result,
robots should not hold onto the gathered data for a long time.
Instead, they have to communicate to other robots frequently
enough, according to desired specifications. Specifically, we
require that every robot i should communicate with other
robots before visiting a specified number of waypoints in-
cluded in Hcur

i (t) since the last communication event they

participated. This allowed number of task waypoints that
they can visit without communicating can change with time
based, e.g., on the importance of the collected data.

To define a communication network among the robots, we
first partition the robot team into M ≥ 1 robot subgroups,
called also teams that are user-specified and fixed with time.
Also, we require that every robot belongs to at least one
team. The indices i of the robots that belong to the m-th
team are collected in a set denoted by Tm, for all m ∈M :=
{1, 2, . . . ,M}. We define the set that collects the indices of
teams that robot i belongs to as Mi = {m|i ∈ Tm, m ∈
M}. Given the teams Tm, for all m ∈ M, we can define
the graph over these teams as follows.

Definition 2.1 (Team Membership Graph GT): The graph
over the teams Tm, m ∈ M is defined as GT = (VT , ET),
where the set of nodes VT is indexed by the teams Tm(t)
and set of edges ET is defined as ET = {(m,n)|Tm ∩ Tn 6=
∅,∀m,n ∈ VT ,m 6= n}.

We assume that the robots have limited communication
capabilities and, therefore, they can communicate only if they
are physically close to each other at a common location in
space, hereafter called a communication point. Specifically,
we assume that there are R ≥ 1 available communication
points at locations vj ∈ W , for j = 1, . . . , R, and we
denote by C = {1, . . . , R} the index set of all communication
points. The indices j of the communication points vj where
communication can take place for the robotic team Tm are
collected in a finite and fixed set Cm ⊆ C, where the
sets Cm are not necessarily disjoint. When all robots in a
team Tm have arrived at a common communication location,
we assume that communication happens and the robots
leave to accomplish their tasks or communicate with other
teams. This way, a dynamic robot communication network
is constructed, defined as follows.

Definition 2.2 (Communication Network Gc(t)): The
communication network among the robots is defined as a
dynamic undirected graph Gc(t) = (Vc, Ec(t)), where the
set of nodes Vc is indexed by the robots, i.e., Vc = N ,
and Ec(t) ⊆ Vc × Vc is the set of communication links
that emerge among robots in every team Tm(t), when they
all meet at a common communication point vj , j ∈ Cm,
simultaneously.

To ensure that information is continuously transmitted
across the network of robots, we require that the commu-
nication graph Gc(t) is connected over time infinitely often,
i.e., that all robots in every team Tm meet infinitely often
at a common communication point vj , j ∈ Cm, that does
not need to be fixed over time. 1 For this, it is necessary to
assume that the graph of teams GT is connected. Specifically,
if GT is connected, then information can be propagated
intermittently across teams through robots that are common
to these teams and, in this way, information can reach all
robots in the network. Connectivity of GT and the fact that
robots can be members of only a few teams means that

1More details on the definition of connectivity over time can be found in
our previous works [8], [10].

information can be transferred over long distances, possibly
to reach a remote user, without requiring that the robots leave
their assigned regions of interest defined by their assigned
tasks and communication points corresponding to the teams
they belong to. Moreover, we assume that the teams are
a priori known and can be selected arbitrarily as long as
the graph of teams GT is connected. Moreover, we assume
that the communication points vj , j ∈ Cm for the first
communication event of all teams Tm are also user-specified.

The goal in this paper is to design paths Pi(t) for all
robots i so that the assigned tasks Hcur

i (t) are accomplished,
the intermittent connectivity requirement is satisfied, and a
user defined cost

∑
i∈N J(Pi(t)) is minimized, where

J(Pi(t)) =
Ki(t)−1∑
ki=1

w(Pkii (t),Pki+1
i (t)). (1)

Specifically, the paths Pi(t) consist of the waypoints in
Hcur
i (t) in the given order as well as communication points

from the sets Cm associated with the teams Tm to which robot
i belongs. Note that any communication points from these
sets Cm can enter Pi(t) in any order. Optimization of the cost
in (1) ensures that the communication points are selected and
placed in Pi(t) optimally. Moreover, in (1), Ki(t) denotes
the number of waypoints in Pi(t), Pkii (t) stands for the ki-
th waypoint in Pi(t), and w(Pkii (t),Pki+1

i (t)) represents
the cost to transition from Pkii (t) to Pki+1

i (t). Hereafter, we
define the transition cost w(Pkii (t),Pki+1

i (t)) as the distance
between Pkii (t) and Pki+1

i (t), i.e.,

w(Pkii (t),Pki+1
i (t)) =

∥∥∥Pkii (t)− Pki+1
i (t)

∥∥∥ . (2)

Note that alternative transition costs w can be defined that
can capture, e.g., consumed energy or travel time. The
problem that is addressed in this paper can be summarized
as follows and illustrated in Figure 1.

Problem 1: Given dynamic task specificationsHcur
i (t) and

fixed teams Tm, m ∈ {1, . . . ,M}, select respective commu-
nication points vj , j ∈ Cm so that the robot paths Pi(t) for
all i ∈ N satisfy: (i) the assigned tasks are accomplished, i.e.,
all robots i go through all waypoints of Hcur

i (t) in the order
they appear in Hcur

i (t); (ii) the communication graph Gc(t)
is connected over time infinitely often; (iii) all robots i ∈
N share the collected time-critical information frequently
enough with all robots in teams Tm, for all m ∈ Mi,
according to desired specifications; and (iv) the total cost
function

∑
i∈N J(Pi(t)) is minimized.

III. INTERMITTENT CONNECTIVITY CONTROL

In this section, we define infinite sequences of commu-
nication events (also called communication schedules) that
ensure that Gc(t) is connected over time infinitely often.
The communication schedules are constructed offline and
require that the robots are connected so that they can share
information with each other. Due to space limitations the
detailed construction of these schedules is omitted and can be
found in Section V in [10]. The constructed communication
schedules are used in Section IV to design a distributed

(a) (b)

Fig. 1. Graphical illustration of the problem formulation. A network of
N = 3 robots (colored dots) divided into M = 3 teams is depicted. The
robot teams are selected to be: T1 = {1, 2}, T2 = {1, 3}, and T3 =
{3, 2}. The green polygons, the blue square, and the red star stand for
the communication points in the sets C1, C2, and C3, respectively. Figure
1(a) illustrates the sequences Hcur

i (t) and Figure 1(b) depicts the paths
Pi(t) that include the task waypoints of Hcur

i (t) and the communication
points for all teams Tm, m ∈ Mi. The communication schedules are
sched1 = [1, 2, X]ω , sched2 = [1, X, 3]ω , and sched3 = [X, 2, 3]ω .

integrated task planning and intermittent connectivity control
framework.

In what follows, we define the communication schedules
that determine the order in which the robots in every team
Tm should communicate with each other.

Definition 3.1 (Schedule of Communication Events):
The schedule of communication events of
robot i, denoted by schedi, is defined as an
infinite repetition of the finite sequence si =
X, . . . ,X,Mi(1), X, . . . ,X,Mi(2), X, . . . ,X,Mi(|Mi|),
X, . . . ,X , i.e., schedi = si, si, · · · = sωi , where ω stands
for the infinite repetition of si.

In Definition 3.1, Mi(e), e ∈ {1, . . . , |Mi|} stands for
the e-th entry of Mi and represents a communication event
for team with index Mi(e), and the discrete states X
indicate that there is no communication event for robot i.
The length of sequence si is ` = max {dTm}

M
m=1 + 1 for

all i ∈ N , where dTm is the degree of node m ∈ VT
[10]. The schedule schedi defines the order in which robot
i participates in communication events for the teams Tm,
m ∈ Mi, for all robots i ∈ N . Specifically, robot i either
has to communicate with all robots that belong to team
Tm, m ∈ Mi, if schedi(ni) = m, or does not need to
participate in any communication event if schedi(ni) = X ,
where schedi(ni) stands for the ni-th entry of schedi and
ni ∈ N+.

Remark 3.2 (Discrete states X): In schedi, defined in
Definition 3.1, the states X indicate that no communication
event for robot i. These states are used to ensure that the
communication event for a team Tm is placed at an entry
of si, m ∈ Mi, with index that is common for all robots
in team Tm; see, e.g., the communication schedules for a
network of N = 3 robots in Figure 1. Nevertheless, as it
will be shown in Proposition 5.1 in Section V, it is the
order of communication events in schedi that is critical to
ensure intermittent communication, not the indices of entries
in si where the communication events are placed. This is
due to a control policy applied to robots that are present in
communication points; see Section IV-D.

IV. INTEGRATED TASK PLANNING AND INTERMITTENT
COMMUNICATION CONTROL

In this section, we synthesize paths Pi(t) that satisfy
the assigned tasks Hcur

i (t), the intermittent connectivity
requirement, and minimize the total cost

∑
i∈N J(Pi(t)).

To achieve this, we select communication points that are
introduced in the dynamic tasks Hcur

i (t) so that the total cost∑
i∈N J(Pi(t)) is minimized.

A. Construction of paths Pi(t)

1) Initialization: Using the schedules schedi, we design
the initial paths Pi(t0), where t0 stands for the initial time
instant, that include (i) all waypoints in Hcur

i (t0) in the
order they appear in Hcur

i (t0), and (ii) the user-specified
communication points vj , j ∈ Cm, for all teams Tm, m ∈
Mi. Specifically, first the paths Pi(t0) are initialized as
Pi(t0) = Hcur

i (t0). If the task specifications Hcur
i (t0) are not

available, then the paths Pi(t0) are initialized as Pi(t0) = ∅.
Then, the paths Pi(t0) are updated by incorporating into
them the user-specified communication points vj , j ∈ Cm,
for all teams Tm, m ∈Mi. The index kmi ∈ {1, . . . ,Ki(t0)}
of the entry in Pi(t0) where the communication point vj ,
j ∈ Cm for team Tm will be placed can be selected either
arbitrarily or optimally so that the cost function J(Pi(t0)) is
minimized. The only requirement is that the communication
points are introduced in Pi(t0) in the order the respective
communication events appear in schedi, for all i ∈ N . In
this way, we ensure that the communication events during
the execution of the paths Pi(t0) will occur in the order
determined by the schedi. Note that during the initialization
phase, the X’s that appear in schedi are ignored and are
not introduced in the paths Pi(t0).

2) Online Construction: At any time t every robot i
can update the current task Hcur

i (t) by appending additional
waypoints from Hi, as discussed in Section II. The addi-
tional waypoints are appended to the paths Pi(t), as well.
Moreover, when the robots i ∈ Tm meet at the respective
communication point that appears in their paths Pi(t), they
communicate and coordinate to select the next communi-
cation point for team Tm, the time instant when they will
communicate again, and design their corresponding paths
Pi(t+) that they will have at the time instant t+, i.e., right
after leaving this communication point. This coordination
process is described in Sections IV-B-IV-C.

B. Selection of Next Communication Point

To select the next communication point vj , j ∈ Cm for
team Tm and incorporate it into Pi(t) giving rise to the paths
Pi(t+), the robots i ∈ Tm(t) solve the following integer
program.

Fig. 2. Graphical illustration of optimization problem (3). Robots 1 and 2
(black dots) in team T1 meet at the selected communication point P1

1 (t) =
P1
2 (t) (green polygon) and coordinate to select the next communication

point for team T1. Red and blue squares stand for the waypoints that
robots 1 and 2 have to visit to accomplish their tasks, respectively. The
communication points for teams T2 and T4 are represented by colored
stars. The resulting paths P1(t+) and P2(t+) comprise the red and
blue, both solid and dashed, lines. The gray line stands for an edge
in the path P1(t) that does not exist in the path P1(t+) due to the
introduction of the communication point for team T1. The schedules of
robots 1 and 2 are sched1 = [1, X, 4] and sched2 = [1, X, 3]. Observe
that the communication points appear in P1(t+) and P2(t+) respect the
corresponding schedules for both robots.

minimize
vj∈Cm ,{kmi }∀i∈Tm

∑
i∈Tm

J(Pi(t+)) (3a)

subject to

Pk
m
i
i (t+) = vj , (3b)

kmi > kLC
i (t), (3c)

kmi ≥ kai (t),where, (3d)

Ki(t
+) ≥ kai (t) ≥ min(kLC

i (t) + 2,Ki(t
+)),

kmi ≤ kbi (t),where Ki(t
+) ≥ kbi (t) ≥ kai (t), (3e)

In the optimization problem (3) the paths Pi(t+) are
initialized as Pi(t+) = Pi(t). In the objective function (3a),
J(Pi(t+)) stands for the cost of the path Pi(t+) defined
in (1). Also, Ki(t

+) stands for the number of waypoints
in Pi(t+). Note that Ki(t

+) = Ki(t) + 1 since Pi(t+)
includes all waypoints of Pi(t) and the next communication
point for team Tm that does not exist in Pi(t). Moreover,
kmi represents the index of the entry in Pi(t+) where the
selected communication point vj , j ∈ Cm will be placed,
i.e., Pk

m
i
i (t+) = vj , j ∈ Cm.

The first constraint (3b) requires that all robots i ∈ Tm
will select the same communication point vj , j ∈ Cm for
the next communication event associated with team Tm and
incorporate it into the entry of Pi(t+) with index kmi . The
second constraint (3c) ensures that all communication points
vj , j ∈ Cm, for every team Tm, m ∈ Mi are introduced in
Pi(t+) in the order that the respective communication events
appear in si. In particular, in the second constraint, the index
kLC
i (t) is defined as the index of the entry in Pi(t) where the

last communication point has been introduced, i.e., none of
the waypoints Pkii (t), for all ki ∈ {kLC

i (t) + 1, . . . ,Ki(t)}

is a communication point. This constraint requires that robot
i will participate at the next communication event for team
Tm only after it has visited all other communication points
that already exist in Pi(t+), for all robots i ∈ Tm. This
combined with the fact that the communication points appear
in the path Pi(t0) in the order determined by schedi, for all
i ∈ N , entails that the communication points are introduced
into all subsequent paths Pi(t), for all t > t0 in the order
that is determined by schedi = sωi , as well, for all i ∈ N ;
see also Example 4.1. As discussed in Remark 3.2, and as
it will be shown in Proposition 5.1, this constraint ensures
that the network never reaches a deadlock configuration
and guarantees intermittent communication infinitely often.
Notice that the symbols X that appear in the schedules
schedi = sωi are ignored and are not introduced in Pi(t+).

The last two constraints (3d)-(3e) are additional constraints
for kmi and determine how frequently communication events
should occur. Specifically, the second constraint requires
that the index kmi is greater than kai (t) which is also an
index of entries of the path Pi(t) and can change with
time. The index kai (t) is selected under the following two
requirements. First, to ensure feasibility of the optimization
problem (3a), kai (t) should satisfy Ki(t

+) ≥ kai (t), for all
ni ≥ 1, since there are only Ki(t

+) possible entries for
the communication point vj , j ∈ Cm in the path Pi(t+).
Second, we require that kai (t) is selected so that kai (t) ≥
min(kLC

i (t) + 2,Ki(t
+)). Essentially, this requirement mo-

tivates robot i to visit kai (t) − kLC
i (t) − 1 waypoints in the

path Pi(t+) that are not communication points, if there are
such waypoints, before communicating with another team;
see also Figure 2. As it will be discussed in Theorem 5.2,
this ensures that robot i will accomplish its assigned task,
i.e., it will eventually visit all waypoints associated with
the assigned task in the path Pi(t+). The last constraint is
similar to the second one and it requires that kmi is smaller
than kbi (t), which is also an index of entries in the path
Pi(t). The index kbi (t) is selected so that the inequality
Ki(t

+) ≥ kbi (t) ≥ kai (t) is satisfied to ensure feasibility
of (3). In other words, the last two constraints require that
the index of the next communication point for team Tm in
the path Pi(t+) should belong to [kai (t), k

b
i (t)] ⊆ N. Finally,

notice that the indices kmi are not required to be the same
for all robots in team Tm.

Example 4.1 (Optimization Problem (3)): Assume that
communication within team T1 = {1, 2} happens, as shown
in Figure 2, and its members coordinate to select their next
communication point. Observe in Figure 2 that K1(t) = 9,
K2(t) = 5, K1(t

+) = 10, and K2(t
+) = 6. Also,

observe that kLC1 (t) = 6 and kLC2 (t) = 5. The parameter
ka1(t) should satisfy 10 ≥ ka1 (t) ≥ min{8, 10} = 8. In
this example, we select ka1(t) = 8, which means that
robot i has to visit at least ka1(t) − kLC1 (t) − 1 = 1
waypoint before communicating again with team T1, after
the last communication event at Pk

LC
i (t)
i (t) for team T4.

The parameter kb1(t) should satisfy kb1(t) ≥ ka1 (t) = 8
and we select kb1(t) = 9. As for robot 2, we have that

ka2(t) should satisfy 6 ≥ ka2 (t) ≥ min{6, 7} = 6 and,
therefore, we select ka2(t) = 6. Also, kb2(t) should satisfy
6 ≥ kb2(t) ≥ 6 and, thus, we select kb2(t) = 6. Observe
also that ka2 (t) − kLC2 (t) − 1 = 0, i.e., robot 2 will not visit
any waypoints associated with the assigned task after the
communication event for team T3, since there are no such
waypoints.

Remark 4.2 (kai (t) and kbi (t)): In practice, kai (t) can be
selected so that robot i collects a sufficiently large amount
of information before communicating with another team. On
the other hand, kbi (t) controls the amount of information that
robot i is allowed to hold onto before sharing it with other
robots. For example, if robot i is expected to collect highly
critical information at the next waypoints, then kbi (t) should
be selected small, so that the collected data can be propagated
to the network, as soon as possible. Thus, kai (t) and kbi (t)
can control the frequency at which communication events
occur. Moreover, kbi (t) can also capture buffer constraints
as, e.g., in [11].

C. Selection of Next Meeting Time Instant

In Section II we assumed that communication between
robots in team Tm(t) happens only when all robots in that
team are simultaneously present a common communication
location vj , j ∈ Cm. Nevertheless, this control policy can
lead to large waiting times which can be undesirable in case
of time-critical missions, or it can even be infeasible if the
robots cannot stay stationary, e.g., due to their dynamics.
To avoid waiting delays, once the robots i ∈ Tm(t) select
their next communication point, they also compute the time
instant tm at which they will communicate again, so that the
waiting time at that next communication point is zero.

The computation of the time instant tm, called also meet-
ing time instant, is described in Algorithm 1. First, every
robot i ∈ Tm computes the last time instant Li ∈ R+

that it needs to participate in a communication event during
the execution of the path Pi(t), i.e., Li = maxe∈Mi

(te)
[line 2, Alg. 1]. This communication event takes place at
the communication point Pk

LC
i (t)
i (t) = Pk

LC
i (t)
i (t+), where

kLC
i (t) was defined in Section IV-B. Second, given the next

communication point vj , j ∈ Cm, for team Tm, determined
by the solution of (3), every robot i ∈ Tm(t) computes
the minimum time required to travel from the location
Pk

LC
i (t)
i (t+) to vj = Pindexm

i
i (t+), denoted by ttri [line 3,

Alg. 1]. Then, any time instant tm ≥ maxi∈Tm(t)(Li + ttri),
is a feasible time instant.2 Here, feasibility of tm means
that there exists a controller which given the robot dynamics
can drive robot i from the communication point Pk

LC
i (t)
i (t+)

to vj within tm − Li time units, for all robots i ∈ Tm.
Design of such a control input for arbitrary robot dynamics
is out of the scope of this paper. In this work, we select
tm = maxi∈Tm(t)(Li + ttri) [line 4, Alg. 1].

2Note that here we assume that if robot i can arrive at a location vj at
time instant Li+ ttr

i , then it can also arrive at vj at tm ≥ Li+ ttr
i which is

a reasonable assumption as long as the the robot velocities are not bounded
below or have sufficiently small lower bounds.

Algorithm 1: Computation of meeting time instant tm

Input: Paths Pi(t+), robot dynamics
ẋi(t) = fi(xi(t),ui(t)), for all robots i ∈ Tm,
vj∈Cm

Output: Meeting time instant tm

1 for i ∈ Tm do
2 Compute time at which the latest communication

event for robot i will occur: Li = maxe∈Mi
(te);

3 Given dynamics ẋi(t) = fi(xi(t),ui(t)) and the
next communication point vj , j ∈ Tm, compute
the minimum required travel time, denoted by ttri ,
from Pk

LC
i (t)
i (t+) to vj ;

4 Tm: tm = maxi∈Tm(t)(Li + ttri);

Remark 4.3 (Initial Meeting Time Instants): Given the
initial paths Pi(t0), feasible initial meeting time instants
tm can be designed if every robot i ∈ N runs Algorithm
1 for each team Tm, m ∈ Mi in the order determined
by schedi. Notice that all robots in team Tm will run
Algorithm 1 for team Tm at the same time, by construction
of schedi, and will collectively compute tm. In this
initialization process, (i) in line 2, we set te = t0 for all
te, e ∈ Mi(t0), that have not been computed at previous
iterations of Algorithm 1, and (ii) in line 3, we compute
the travel time from the communication point that appears
right before the communication point of team Tm in Pi(t0)
(or xi(t0) if this communication point is not defined) to
the communication point of Tm. We show via simulations
that even if the initial meeting time instants are selected
arbitrarily and, as a result, they are not necessarily feasible,
resulting in non-zero waiting times, the waiting time will
eventually become zero for all teams Tm, m ∈ M. By
construction of Algorithm 1, if the initial meeting time
instants are feasible, then the waiting time will always be
zero for all teams Tm, m ∈M.

D. Online Execution of Paths Pi(t)
In this section we discuss the online execution of the paths

Pi(t), for all t ≥ t0. Given the paths Pi(t), for any t ≥
t0, robots start moving towards the next unvisited waypoint
in the path Pi(t), i.e., the first waypoint in Pi(t), denoted
by P1

i (t), since visited waypoints are deleted from Pi(t)
[line 2, Alg. 2]. When robot i reaches the waypoint P1

i (t),
it checks if this location corresponds to a communication
point associated with a team Tm, m ∈ Mi. If this is not
the case, then robot i deletes the waypoint P1

i from the path
Pi(t), as there is no need to store it anymore, and moves
towards the next waypoint P1

i (t) [line 7, Alg. 2]. Otherwise,
if P1

i (t) = vj , j ∈ Cm, m ∈Mi robot i communicates and
coordinates with all other robots in team Tm to select next
communication point, next meeting time instant, and design
new paths Pi(t+) [line 5, Alg. 2]. Note that uncertainty and
exogenous disturbances may affect the arrival times of the
robots at the communication points. Thus, if the robots i ∈
Tm are not able to arrive at vj , j ∈ Cm at the meeting time

Algorithm 2: Online Execution of Pi(t), t ≥ t0
Input: Sets Cm, ∀m ∈M, Pi(t0)

1 while Terminate=0 do
2 Move towards P1

i (t);
3 if (xi(t) = P1

i (t)) ∧ (P1
i (t) = vj , j ∈ Cm),

m ∈Mi(t) then
4 Wait until all robots of team Tm(t) arrive;
5 Select next communcation point, next meeting

time, and design new paths ;
6 if (xi(t) = P1

i (t)) then
7 Delete the visited waypoint P1

i (t) from Pi(t);

instants tm computed in Section IV-C, then they wait for
each other until all of them arrive at vj , j ∈ Cm [line 4,
Alg. 2].

V. CORRECTNESS

In this section, we present results pertaining to correctness
of the proposed control scheme. Specifically, in Theorems
5.2 and 5.3, we show that when the robots follow the paths
Pi(t) both the assigned task and the intermittent communica-
tion requirement are satisfied. To show these results, we first
need to show that the system is deadlock-free when the paths
Pi(t) are executed as discussed in Section IV-D. Specifically,
we assume that there is a deadlock, if there are robots in any
team Tm that are waiting forever at a communication point
for the arrival of all other robots in team Tm. The proof of
Proposition 5.1 is the same as the proof of Proposition 7.3
in [10] and, therefore, is omitted.

Proposition 5.1 (Deadlock): The mobile robot network is
deadlock-free when the paths Pi(t) are executed as in
Section IV-D.

Theorem 5.2 (Task): Construction and execution of paths
Pi(t) as per the proposed algorithm ensures that all robots
will accomplish the assigned task.

Proof: First, note that by construction of Pi(t), the
paths Pi(t) preserve the order in which task waypoints
appear in Hcur

i (t). Therefore, to show this result, it suffices
to show that there exists a time instant t′i ≥ t when robot i
will visit all task waypoints that appear in the path Pi(t),
for all t ≥ t0 and for all i ∈ N . This is shown by
contradiction. Specifically, assume that robot i will never
visit any of the task waypoints that appear in Pi(t). This
can happen in two cases. First, this may occur if the network
reaches a deadlock configuration which cannot happen due
to Proposition 5.1. Second, this may happen if robot i
always introduces the communication points for all teams
Tm, m ∈ Mi, in consecutive entries of its path Pi(t) and,
therefore, never visits any task waypoints between any two
consecutive communication events. Nevertheless, this cannot
happen, if there are task waypoints in Pi(t), due to the
second constraint in (3) completing the proof.

Theorem 5.3 (Intermittent Connectivity): Construction
and execution of paths Pi(t) as per the proposed algorithm

ensures that that the dynamic communication graph Gc(t) is
connected over time infinitely often.

Proof: To show this result, it suffices to show that
the time interval between two consecutive communication
events for all teams Tm is finite. This is because every robot
belongs to at least one team GT is connected. First recall,
at any time instant t ≥ t0, there exists a communication
point for all teams Tm, m ∈ Mi, in the paths Pi(t), for
all i ∈ N . Second, recall that due to Proposition 5.1, it
holds that the waiting times of robots at the communication
points are bounded and, therefore, the network is deadlock-
free. Therefore, we conclude that robots in team Tm will
eventually communicate again, for all m ∈ M completing
the proof.

Remark 5.4 (Comparison with [10]): Algorithm 2 in [10]
incorporates optimally communication points in periodic
paths, which are known a priori, by exploiting their peri-
odicity. Nevertheless, here, we consider arbitrary tasks that
are not necessarily satisfied by periodic paths. As a result,
(i) the optimality guarantees provided in Proposition 7.1 in
[10] do not hold here, and (ii) if we apply both algorithms
to periodic tasks the resulting paths will be different.

VI. SIMULATION STUDIES

In this section, a simulation study is provided that illus-
trates our approach for a network of N = 15 robots that
reside in a 10 × 10 square workspace free of obstacles.
Robots are categorized into M = 12 teams as follows: T1 =
{1, 2, 9}, T2 = {3, 4, 5}, T3 = {3, 6, 13}, T4 = {1, 3, 14},
T5 = {2, 5, 6, 11}, T6 = {4, 12, 14}, T7 = {5, 9, 15},
T8 = {4, 9, 12}, T9 = {6, 7, 10, 15}, T10 = {7, 8, 11},
T11 = {8, 10, 11, 12}, and T12 = {7, 10, 13} resulting in
a connected graph GT . In the workspace, there are R = 60
communication points that are randomly located inW , where
we select |Cm| = 5, for all m ∈ M and Cm ∩ Cn = ∅, for
all m,n ∈M. Also, we assume that the robot dynamics are
given by ẋi(t) = ui(t), ‖ui(t)‖ ≤ uimax.

Robot 1 has to follow a finite path with H1 = 4, which
is randomly generated at the beginning capturing point-to-
point navigation tasks [14] or co-safe LTL tasks [15]. For
all the other robots we select Hi = ∞. Specifically, we
assume that robots 2 and N have to follow periodic paths
forever to accomplish their assigned tasks. These paths are
randomly generated at the beginning resembling in this way
surveillance [16], estimation [17], or LTL tasks [11].3 Also,
the periodic path PN goes through a user that receives the
collected information. All the other robots have to follow
infinite and aperiodic paths. These robots initially construct
finite paths which are randomly generated and then they
extend those paths at random time instants by a number of
waypoints that is randomly selected from [1, 10] resembling

3For periodic paths, Ki(t) can be selected arbitrarily large, since it can
be viewed as an infinite and known path. As a result, if Ki(t) is greater
than the period of a periodic path, then during a single execution of this
periodic path, robot i may not necessarily communicate with all teams Tm,
m ∈Mi, which is not the case in [10].

� �� �� �� �� ��

�

�

�

�

�

�

Fig. 3. Graphical depiction of number of waypoints (solid lines) associated
with the assigned task that were visited by all robots between consecutive
communication events.

tasks in unknown or dynamic environments as, e.g., in [18],
[19], or receding horizon planning approaches [13], [20].

The schedules of communication events have the following
form.

sched1 = [1, 4, X, X]ω , sched9 = [1, 8, 7, X]ω ,

sched2 = [1, 5, X, X]ω , sched10 = [9, 12, X, 11]ω ,

sched3 = [2, 4, 3, X]ω , sched11 = [X, 5, 10, 11]ω ,

sched4 = [2, 8, 6, X]ω , sched12 = [X, 8, 6, 11]ω ,

sched5 = [2, 5, 7, X]ω , sched13 = [X, 12, 13, X]ω ,

sched6 = [9, 5, 3, X]ω , sched14 = [X, 4, 6, X]ω ,

sched7 = [9, 12, 10, X]ω , sched15 = [9, X, 7, X]ω ,

sched8 = [X, X, 10, 11]ω .

Moreover, we select kai (t) = min(Ki(t
+), kLC

i (t) + 2),
for all i ∈ N , which means that robot i has to visit at
least one waypoint associated with the assigned task, if
there exists such a waypoint in Pi(t), between consecutive
communication events. Also, we assume that every time
the robots visit a waypoint related to the assigned task,
they collect one packet of information while they should
never keep more than five packets that have never been
transmitted to other robots. To capture such limitations, we
select kbi (t) = min(Ki(t

+), kLC
i (t) + 6), for all i ∈ N .

Notice that the selected values for kai (t) and kbi (t) meet
all the requirements described in Section IV-B to guarantee
feasibility of the optimization problem (3), for all t > t0.
Observe in Figure 3 that all robots visit at least one and
at most five waypoints related to the assigned task between
consecutive communication events, as required. Note also
that in this simulation study, it always holds that kai (t) =
kLC
i (t) + 2 and kbi (t) = kLC

i (t) + 6, for all t ≥ t0 and for
all robots i 6= 1. Since robot 1 has to follow a finite path to
accomplish its task, there exists a time instant t′, where all
the locations in its path P1(t) are only communication points,
for all t ≥ t′. Therefore, there are no waypoints related to
the assigned task between communication points.

Also, the initial meeting time instants are selected as
tm = t0, for all teams Tm, m ∈ M, which are clearly
infeasible. The resulting waiting times of all robots at the

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35
Team 1
Team 2
Team 3
Team 4
Team 5
Team 6
Team 7
Team 8
Team 9
Team 10
Team 11
Team 12

(a) Waiting Time

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20

(b) Consensus

Fig. 4. Figure 4(a) shows the waiting time of team Tm, every time the
robots i ∈ Tm communicate, for all m ∈ M. The waiting time of team
Tm is defined as the maximum waiting time of all robots i ∈ Tm at
the selected communication point vj , j ∈ Cm. Figure 4(b) depicts the
consensus of numbers vi(t). In Figure 4(b), the number of iterations in the
x-axis is increased by one every time any team communicates.

communication points are depicted in Figure 4(a). Observe
that eventually the waiting time at the selected communica-
tion points is zero for all teams despite the initially infeasible
meeting time instants.

To illustrate that the proposed motion plans ensure inter-
mittent communication among the robots infinitely often, we
implement a simple consensus algorithm over the dynamic
network Gc. Specifically, we assume that initially all robots
generate a random number vi(t0) and when all robots i ∈ Tm
meet at vj , j ∈ Cm they perform the following consensus
update vi(t) = 1

|Tm|
∑
e∈Tm ve(t). Figure 4(b) shows that

eventually all robots reach a consensus on the numbers vi(t),
which means that communication among robots takes place
infinitely often, as proven in Theorem 5.3. The simulation
video along with its description can be found in [21].

VII. CONCLUSION

In this paper, we proposed a distributed intermittent
communication framework for teams of mobile robots with
limited communication ranges that are responsible for ac-
complishing time-critical dynamic tasks. To the best of our
knowledge, this is the first distributed and online intermittent
communication framework that scales well with the size of
the network and can handle time-critical dynamic tasks and
arbitrary communication topologies.

REFERENCES

[1] M. Zavlanos and G. Pappas, “Distributed connectivity control of
mobile networks,” IEEE Transactions on Robotics, vol. 24, no. 6, pp.
1416–1428, 2008.

[2] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.

[3] M. Zavlanos, M. Egerstedt, and G. Pappas, “Graph theoretic connec-
tivity control of mobile robot networks,” Proc. of the IEEE, vol. 99,
no. 9, pp. 1525–1540, 2011.

[4] Y. Yan and Y. Mostofi, “Robotic router formation in realistic com-
munication environments,” IEEE Transactions on Robotics, vol. 28,
no. 4, pp. 810–827, 2012.

[5] M. M. Zavlanos, A. Ribeiro, and G. J. Pappas, “Network integrity in
mobile robotic networks,” IEEE Transactions on Automatic Control,
vol. 58, no. 1, pp. 3–18, 2013.

[6] Y. Kantaros and M. M. Zavlanos, “Global planning for multi-robot
communication networks in complex environments,” IEEE Transac-
tions on Robotics, vol. 32, no. 5, pp. 1045–1061, 2016.

[7] Y. Kantaros and M. M. Zavlanos, “Distributed intermittent connectivity
control of mobile robot networks,” Transactions on Automatic Control,
vol. 62, no. 7, pp. 3109–3121, July 2017.

[8] Y. Kantaros and M. M. Zavlanos, “Simultaneous intermittent commu-
nication control and path optimization in networks of mobile robots,”
in Conference on Decision and Control (CDC). Las Vegas, NV:
IEEE, December 2016, pp. 1794–1795.

[9] Y. Kantaros and M. M. Zavlanos, “Intermittent connectivity control
in mobile robot networks,” in 49th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, USA, November, 2015,
pp. 1125–1129.

[10] Y. Kantaros, M. Guo, and M. M. Zavlanos, “Temporal task planning
and intermittent communication control of mobile robot networks,”
IEEE Transactions on Automatic Control (submitted), 2017. [Online].
Available: https://arxiv.org/abs/1706.00765

[11] M. Guo and M. M. Zavlanos, “Distributed data gathering with buffer
constraints and intermittent communication,” in IEEE International
Conference on Robotics and Automation, Singapore, May 2017, pp.
279–284.

[12] M. M. Zavlanos, “Synchronous rendezvous of very-low-range wireless
agents,” in 49th IEEE Conference on Decision and Control (CDC),
Atlanta, GA, USA, December 2010, pp. 4740–4745.

[13] G. Hollinger and S. Singh, “Multi-robot coordination with periodic
connectivity,” in IEEE International Conference on Robotics and
Automation (ICRA), Anchorage, Alaska, May 2010, pp. 4457–4462.

[14] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[15] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based mo-
tion planning with temporal goals,” in International Conference on
Robotics and Automation (ICRA), Anchorage, AL, May 2010, pp.
2689–2696.

[16] S. Nardi, T. Fabbri, A. Caiti, and L. Pallottino, “A game theoretic
approach for antagonistic-task coordination of underwater autonomous
robots in asymmetric threats scenarios,” in OCEANS 2016 MTS/IEEE,
Monterey, CA, September 2016, pp. 1–9.

[17] X. Lan and M. Schwager, “Rapidly exploring random cycles: Persis-
tent estimation of spatiotemporal fields with multiple sensing robots,”
IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1230–1244, 2016.

[18] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[19] J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-
Gazit, “Reactive mission and motion planning with deadlock reso-
lution avoiding dynamic obstacles,” Autonomous Robots, pp. 1–24,
2017.

[20] A. Ulusoy and C. Belta, “Receding horizon temporal logic control
in dynamic environments,” The International Journal of Robotics
Research, vol. 33, no. 12, pp. 1593–1607, 2014.

[21] SimulationVideo, https://vimeo.com/255775629, 2018.

