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ABSTRACT 

Objective. In this paper, we propose an adaptive federated learning framework to learn optimal 

treatments for individual hospitals that possibly serve different patient populations. The proposed 

framework can enable the design of more efficient treatment allocation problems.    

Methods. We propose a federated treatment recommendation strategy that for each hospital is 

formulated as a Multi-Armed Bandit (MAB) problem. The process is coordinated by a lead hospital 

that adaptively learns and transfers Upper Confidence Bounds (UCB) across similar hospitals and 

Personalized Upper Bounds across heterogeneous hospitals. We test our proposed method on a 

simulated clinical trial environment created using real Covid-19 data from the Duke University 

Health System. 

Results. Our method relies on collaboration among hospitals, which allows for fewer data 

samples needed per institution, while protecting the privacy of the individual patient data. At the 

same time, it ensures fairness of the learned treatments by mitigating possible biases due to 

differences in the patient populations treated across different hospitals. Finally, our method 

improves the safety of the learning procedure by reducing the number of patients administered 

with sub-optimal treatments at each hospital. In the experiments, we show that our proposed 

method outperforms other state of the art approaches in that it requires up to 36%-75% fewer 

patient data to learn the optimal treatment for each hospital and administers the optimal treatment 

to 0.95%-48.6% more patients.  

Conclusion. In this paper, we propose an adaptive federated learning strategy for treatment 

recommendation tasks, that learns optimal treatments for individual hospitals that possibly serve 

different patient populations, while satisfying privacy, fairness, and safety considerations. 

 

 



1. INTRODUCTION 

1.1 Background 

Providing personalized and optimized treatment recommendations is a critical challenge in the 

healthcare industry, with broad applications. Adaptive treatment strategies are increasingly 

essential in chronic disease management (e.g., diabetes, hypertension), oncology, mental health 

care, emergency medicine, post-acute rehabilitation, where treatment efficacy and safety often 

depend on patient-specific factors such as comorbidities, demographics, and genetic profiles [1, 

2]. In clinical trials, personalized allocation can reduce sample size requirements and improve trial 

efficiency through adaptive randomization [3]. In real-world healthcare delivery, intelligent 

decision support systems can dynamically recommend treatments based on evolving clinical data 

and institutional constraints [4]. AI-enabled population health platforms also enable stratified care 

pathways, helping health systems target interventions to high-risk individuals while reducing 

unnecessary treatment for lower-risk patients [5]. As artificial intelligence (AI) and machine 

learning technologies continue to mature, there is a growing opportunity to develop adaptive 

frameworks that leverage electronic health records (EHR), imaging, genomics, and patient-

reported outcomes to generate data-driven treatment plans that are both scalable and 

personalized, ultimately improving safety, efficacy, and equity in healthcare delivery. 

 

Providing adaptive treatment recommendations in both clinical trials and real-world healthcare 

settings is typically formulated as an adaptive treatment allocation problem. This refers to a 

sequential decision-making procedure in which the probability of administering a specific 

treatment to a patient, changes based on previous observations. Multi-Armed Bandit (MAB) 

algorithms [6] are particularly suited to solve this problem, e.g., for facilitating treatment allocation 

[7] and dose-finding [8, 9] or for tailoring treatment strategies [10], as they can effectively navigate 

the balance between exploration and exploitation of treatments. On top of this, when treatment 



allocation strategies need to be personalized to each individual, the contextual variation of MAB 

is utilized for covariate-based decision making [10, 11, 12]. However, one critical barrier when 

deploying MAB algorithms is that MAB performance can degrade substantially when applied to 

small datasets, which often arise in observational healthcare settings or when off-policy evaluation 

is required [13]. This challenge is further exacerbated by the difficulty of recruiting enough patients 

in clinical trials, where participation rates are typically low [14, 15]. Thus, while MAB algorithms 

are well-suited to many healthcare decision-making problems in theory, their effectiveness in 

practice is often hindered by data scarcity. To mitigate this issue, federated learning methods can 

be used to leverage distributed knowledge from similar machine learning procedures conducted 

across different hospitals. Recent advances in federated MAB algorithms [16, 17] have typically 

involved sharing model parameters and combining information only across similar institutions. In 

contrast, our framework exchanges only treatment–outcome pairs and returns information that 

leverages data from both similar and dissimilar hospitals, enabling broader and more robust 

collaboration. Moreover, the deployment of such approaches in healthcare remains under-

explored. 

 

1.2 Significance 

Two well-known challenges in the real-world application of treatment recommendation systems 

are the lack of subject participation and the possible risks for patients due to sub-optimal treatment 

allocation strategies. To address these challenges, we propose a new cooperative adaptive 

treatment allocation design that relies on federated learning to allow hospitals to share aggregated 

information and, as a result, learn their optimal treatment strategies even with fewer participants. 

Since sharing individual patient data across hospitals raises privacy concerns, we design our 

framework to learn hospital-specific policies, which aggregate knowledge at the institutional level 

without exposing individual records. To support effective collaboration under this design, we 



incorporate clustering and causal inference techniques [18], which enable knowledge sharing 

among both similar and heterogeneous hospitals. Finally, these techniques are used in a MAB 

framework with a focus on upholding patient privacy [19] (since no raw patient-level data are 

shared across hospitals), ensuring fairness [20], and improving participant safety (as our 

allocation process prioritizes assigning the most promising treatment rather than randomizing 

arbitrarily). 

 

To evaluate our proposed design, we focused on a Covid-19 treatment allocation problem. Given 

the urgent need for new Covid treatments at the time [21], numerous trials were conducted at 

healthcare facilities around the world. Under those circumstances, federated learning would have 

provided an excellent opportunity to help coordinate and expedite the discovery of effective Covid 

treatments. Specifically, we use Covid-19 data available in the Duke Health System to create a 

simulation environment and test our method’s performance, as it is usually done in similar medical 

applications [22]. We create this environment with a similar strategy as illustrated in [23], using 

retrospective electronic health records data (EHR) from three Duke hospitals, which allows us to 

accurately replicate real-world scenarios and rigorously test our model's efficacy and adaptability.  

Finally, we have designed our method to align with TRIPOD guidelines as described in the 

supplementary materials. To our knowledge, this is the first instance of a federated learning 

approach that amalgamates clustering methods and causal inference within an online MAB 

framework for treatment allocation tasks. 

 

Statement Of Significance 

• Problem: Multiple hospitals are engaged in the same treatment allocation task, yet these 

efforts are typically conducted in isolation. 

• What is Already Known: Prior research has explored adaptive treatment allocation 

strategies, which aim to optimize patient outcomes during the learning phase by 



dynamically adjusting treatment assignments. However, existing approaches do not 

leverage the fact that similar learning tasks are being independently undertaken at multiple 

institutions. 

• What this paper Adds: This paper introduces a novel framework for Collaborative 

Adaptive Learning in the context of treatment allocation. The proposed method facilitates 

knowledge sharing among homogeneous hospitals (homogeneous hospitals), and even 

enables knowledge transfer across institutions serving demographically heterogeneous 

patient populations.  

• Who would benefit from this knowledge in this paper: Clinicians and healthcare 

practitioners seeking to implement adaptive treatment strategies with limited patient data. 

The proposed approach enhances learning efficiency and patient safety by utilizing 

insights gained collaboratively across institutions. 

 

2. MATERIALS AND METHODS 

2.1 Problem Set Up 

We consider a collection of 𝐻 non-identical hospitals serving different patient populations in terms 

of both patient distributions and patient numbers. Each hospital ℎ ∈ 	ℋ =	 {1,⋯ ,𝐻} conducts a 

treatment allocation task with the objective to learn a treatment 𝑥!∗ ∈ 𝒳 = {1,⋯ , 𝑋}	among 𝑋 

possible treatment options, that is optimal for the average patient in its local population group. We 

formulate the treatment allocation strategy at every hospital ℎ as a Multi-Armed Bandit (MAB) 

problem defined by the tuple (𝒳, {𝑌!(𝑥)}#∈𝒳), where 𝑥 ∈ 𝒳 denotes a treatment option and 

𝑌!(𝑥) = 𝑃(𝑦|𝑥) is an unknown probability distribution of the treatment outcome 𝑦 given a 

treatment 𝑥 ∈ 𝒳 that depends on the patient population that each hospital serves. Here we 

assume a binary treatment outcome 𝑦 = {0,1} so that 𝑦 = 1 if a patient responded well to a 



treatment and 𝑦 = 0 otherwise. Furthermore, we assume that patient arrivals at hospitals follow 

a distribution 𝑃(ℎ)∀ℎ ∈ ℋ. Then, for every new patient that arrives at hospital ℎ, a treatment 𝑥!,' ∈

𝒳 is selected and a reward 𝑦!(𝑥!,')~𝑌!(𝑥!,') is observed. The optimal treatment strategy 𝑥!∗ ∈ 𝒳 

at hospital ℎ is defined as the one that maximizes the expected reward up to time step 𝑡, i.e., 𝑥!∗ =

𝑎𝑟𝑔𝑚𝑎𝑥#∈𝒳𝔼[𝑌!(𝑥)].  

 

To learn the optimal treatment strategy 𝑥!∗  at each local hospital ℎ and accurately estimate the 

unknown distribution of treatment outcomes 𝑌!(𝑥!∗), the MAB needs to identify the most effective 

treatment by (i) exploring different treatment options and (ii) exploiting the current best treatment 

𝑥!,'∗  to increase confidence in the current best treatment and maximize patient benefit from this 

treatment. Managing this balance between exploration and exploitation in a MAB problem is key 

in learning the optimal treatment strategy fast, using as few data samples as possible. 

 

2.2 Proposed Method 

To improve the data efficiency of the MAB problem, we propose a federated approach in which 

hospitals collaborate through a designated lead institution. Each hospital continues to operate its 

own treatment allocation task locally but shares with the lead hospital the treatment 𝑥 

administered to patient 𝑡 along with the corresponding binary outcome 𝑦',!(𝑥). Importantly, no 

patient-level records are exchanged, ensuring that sensitive data remain within each institution 

and preserving patient privacy. Once the lead hospital has received T data samples across all 

participating hospitals, a Communication Round (CR) is triggered. 

During each CR, the lead hospital determines what information to return to every participating 

hospital. For each hospital ℎ, it identifies a set of hospitals 𝑆! that are sufficiently similar in terms 

of their estimated optimal treatment and its expected reward via the following criterion: 

𝑆! = AℎB ∈ 𝐻	C	𝑥!⋆ =	 	𝑥!)
⋆ 		𝑎𝑛𝑑	C𝑌!(	𝑥!⋆) − 𝑌!)(	𝑥!)

⋆)C ≤ 𝜖} 



where: 

• 	𝑥!⋆ is the current estimated optimal treatment at hospital ℎ, 

• 𝑌!(	𝑥!⋆) is its expected reward, 

• 𝜖 is a tunable similarity threshold 

This criterion ensures hospitals are clustered only when they share the same optimal treatment 

and have similar estimated performance.  

 

Once the cluster for each hospital is defined, for each treatment 𝑥, the lead hospital aggregates 

all observed outcomes from the hospitals in that cluster between the current and the previous CR. 

Let 𝑡 denote the patient index within each hospital, and 𝑥!,' the treatment chosen that patient by 

hospital ℎ. Then, the accumulated reward for treatment 𝑥 across the hospitals in 𝑆! is 

𝑦*++
,! (𝑥) = 	∑ ∑ 𝑦',!)(𝑥)'∈-.:#!",$0#!)∈,! , 

and the number of times treatment 𝑥 has been administered within that cluster is  

𝑁,!(𝑥) = 	∑ |{𝑡:	𝑥!),' = 𝑥}|!)∈,! . 

The total number of treatments administered across all treatments in that cluster is then: 

𝑁L,! =	M𝑁,!(𝑥)
#∈1

 

Using these aggregated quantities, the lead hospital computes the Aggregate Upper 

Confidence Bound (AggrUCB) for each treatment 𝑥 and each hospital ℎ as: 

𝐴𝑔𝑔𝑟𝑈𝐶𝐵R𝑌!(𝑥)S =
𝑦*++
,! (𝑥)
𝑁,!(𝑥)

+ 𝑐	V
log	(𝑁L,!)
𝑁,!(𝑥)

 

where 𝑐 is a positive exploration coefficient controlling how aggressively the algorithm balances 

exploration (trying new treatments) versus exploitation (selecting the currently best-performing 

treatment). This form computes classical UCB formula over aggregated cluster-level data 



rather than individual hospital data, which provide hospital ℎ with a more informed Upper 

Confidence Bound.  

 

For hospitals that are not considered similar according to the previous criterion, the lead hospital 

computes Personalized Upper Bounds on Treatment Effects (PUBound). These bounds allow 

safe knowledge transfer across heterogeneous hospitals where patient populations and treatment 

responses differ. 

 

Based on the causal inference formulation in [18], the lead hospital uses the aggregated 

information from all the hospitals to compute upper and lower bounds on the expected reward of 

each treatment: 

L-*23*4(Y(x)) 	= 	Prob(Treatment	 = 	x, y	 = 	1), 

U-*23*4RY(x)S = 	1 − Prob(Treatment	 = 	x, y	 = 	0), 

Furthermore, using information on the patient distribution across hospitals, the lead hospital can 

analyze the expected reward of each treatment for each hospital individually as follows: 

𝑌(𝑥) = 	∑ 𝑃(ℎ)𝑌!(𝑥)!∈5  (1) 

Based on equation (1) and the causal upper and lower bounds computed before, for each hospital 

ℎ and treatment 𝑥 the lead hospital then computes Personalized Upper Bound for 𝑌!(𝑥) by solving 

the following optimization problem: 

 

maximize   𝑈𝐵𝑜𝑢𝑛𝑑(𝑌!(𝑥)) 

subject to  𝐿-*23*4R𝑌(𝑥)S ≤ ∑ 𝑃(ℎ)𝑈𝐵𝑜𝑢𝑛𝑑R𝑌!(𝑥)S ≤ 𝑈-*23*4(𝑌(𝑥))!∈5 , 

                      𝐿𝐶𝐵R𝑌!(𝑥)S ≤ 𝑈𝐵𝑜𝑢𝑛𝑑R𝑌!(𝑥)S ≤ 𝑈𝐶𝐵R𝑌!(𝑥)S∀ℎ ∈ 𝐻. 

where LCB and UCB denote the lower and upper aggregated confidence bounds: 

𝐿𝐶𝐵R𝑌!(𝑥)S =
6%&&
'! (#)
9'!(#)

− 𝑐:	k;<=	(9
?'!)

9'!(#)
 and 𝑈𝐶𝐵R𝑌!(𝑥)S =

6%&&
'! (#)
9'!(#)

+ 𝑐:	k;<=	(9
?'!)

9'!(#)
. 



 

Here, c′ is a confidence coefficient controlling how conservative the personalized bounds are. 

This optimization yields 𝑈𝐵𝑜𝑢𝑛𝑑(𝑌!(𝑥)), a Personalized Upper Bound that incorporates 

knowledge from dissimilar hospitals while preserving privacy. 

 

The results of this analysis—AggrUCB values for clusters of similar hospitals and PUBound 

values for dissimilar ones—are communicated back to the local institutions. Each hospital 

integrates these quantities into its own MAB algorithm, replacing the standard UCB with the tighter 

of the two values. In this way, hospitals avoid unnecessary exploration of treatments already 

known to perform poorly, while still retaining the ability to discover effective strategies for their 

unique populations. This iterative process of patient arrivals, local treatment assignment, periodic 

communication, and federated updating gives rise to our proposed CausalAdapUCB algorithm. 

An illustration of the method is provided in Figure 1, a complete mathematical description is 

available in the Supplementary Appendix, and our implementation can be accessed at: 

https://github.com/xeniakonti/FL-Framework-for-treatment-allocation.  

https://github.com/xeniakonti/FL-Framework-for-treatment-allocation


 

Figure 1. The figure describes the federating process suggested in the paper. The hospitals that 

participate in the system may serve similar or different patient populations, and they model their 

corresponding treatment allocation task as a Multi-Armed Bandit problem. The federating process 

is coordinated by a Lead Hospital that is responsible for clustering hospitals according to how 

similar their patient populations are and then computing and transferring information that is 

personalized to each hospital individually. 



2.3. Methods for Comparison 

To evaluate the effectiveness of our method, we benchmark it against several existing treatment 

assignment strategies commonly used in allocation problems, including (1) RandTrial [24, 25]: a 

randomized treatment assignment, where for every patient the treatment is selected randomly, 

(2) LocalUCB [26]: a standard multi-armed bandit algorithm where each hospital independently 

executes a UCB policy using only its local data, without any form of collaboration, (3) GlobalUCB: 

a fully pooled approach in which all hospitals are treated as a single entity, and a global UCB is 

computed using data from the entire population, ignoring hospital-level heterogeneity, and (4) 

AdapUCB: a partially collaborative design where a lead hospital computes and transfers only the 

aggregate UCB value across institutions, without propagating personalized upper bounds tailored 

to local hospital populations. Together, these methods provide meaningful points of comparison: 

RandTrial as a traditional clinical baseline, LocalUCB and GlobalUCB as canonical MAB 

implementations at the local and global levels, and AdapUCB as an intermediate ablation to 

isolate the contribution of personalized upper bounds. We deploy each of these methods 

independently within the test environments we design and compare their performance against our 

proposed approach. Details of the evaluation metrics and simulation environments are provided 

in the subsequent sections.  

 

2.4. Dataset Description 

We use historical data of Duke patients diagnosed and treated for Coronavirus disease 19 (Covid-

19) from year 2020 to year 2021, obtained from the Duke Clinical Research Data Mart, which 

provides access to Duke patient data since the beginning of 2014. Specifically, the dataset 

consists of 21,482 different patients who had at least one U07.1 (“COVID-19, virus identified”), an 

ICD-10 diagnosis code or a positive SARS-CoV-2 reverse transcription polymerase chain reaction 

(PCR) test result recorded within the healthcare data. Every patient in the dataset may have 



visited a Duke hospital multiple times. Each patient visit is considered a new patient encounter 

and is characterized by a unique encounter id. During each encounter, a patient may have 

received multiple medications. We only consider inpatient encounters, that is patients who were 

treated solely at Duke hospitals and didn’t visit non-Duke hospitals. For every patient encounter, 

the dataset includes information on the patient’s demographic characteristics (e.g. age, race), the 

dates they were administered Covid-19 medications during their visit, the type of medications, 

and the treatment outcome, i.e., whether they died and when. Figure 2c shows the patient 

distribution in terms of their age and race. The treatments used during the period that the data 

were collected are Treatments = {Ritonavir, Bamlanivimab, Casirivimab-Imdevimab, Remdesivir, 

Ritonavir Nirmatrelvir, Sotrovimab, Bamlanivimab Etesevimab}.  

 

2.5. Simulation Environment 

To simulate an environment consisting of multiple heterogeneous hospitals conducting the same 

treatment allocation task, we split the data into different groups, each one modeling an individual 

hospital. We introduce heterogeneity in the hospital populations by biasing each hospital’s data 

with respect to the patients’ age. Specifically, 82.8% of patients that visit Hospital 1 are younger 

than 40, 17% are between 40 and 80, and 0.2% are older than 80. Additionally, 23.3% of patients 

that visit Hospital 2 are younger than 40, 76.3% are between 40 and 80, and 0.3% are older than 

80. Finally, 59.4% of patients that visit Hospital 3 are younger than 40, 26.6% are between 40 

and 80, and 13% are older than 80. In this way, Hospital 1 is assigned 49% of the total patient 

population in the historical dataset, Hospital 2 is assigned 37% of it, and Hospital 3 is assigned 

14% of it. The distribution of patients across the three hospitals in terms of their age and race is 

shown in Figure 2a-2b. To evaluate the different treatment options at the three simulated hospital 

environments, we use the following two metrics: i) whether any patient died after receiving a 

treatment and ii) whether they were re-hospitalized. 



 

 

 

Figure 2. This figure displays the demographic distribution of Duke patients diagnosed with 

COVID-19, broken down by age and race. Subfigure 2a presents the aggregated age and race 

distribution across all hospitals. Subfigure 2b shows the race distribution for each of the three 



hospitals considered in our experiments, and subfigure 2c shows the corresponding age 

distribution. 

 

Name of Treatment Hospital 1 Hospital 2 Hospital 3 

Real Data with Death Event Reward 

Casirivimab-Imdevimab 0.988 0.981 0.96 

Remdesivir 0.86 0.81 0.76 

Real Data with Death Event or Readmission Reward 

Casirivimab-Imdevimab 0.63 0.62 0.6 

Remdesivir 0.79 0.75 0.7 

Bamlanivimab-Etesevimab 0.61 0.54 0.55 

Artificial Simulation Environment  

Treatment 1 0.3 0.9 0.2 

Treatment 2 0.8 0.5 0.7 

Treatment 3 0.6 0.1 0.9 

 

Table 1. Summary of the expected reward of each treatment for each hospital for different 

outcomes, with artificial hospital segmentation and optimal medication strategies.  

 

2.6. Real Data Simulation with Death Event as a reward metric 

 In this case, we consider the death event metric, and every time a treatment is administered to a 

patient, we examine whether the patient died within 7 to 30 days after receiving the treatment. If 

the patient dies, we assign the treatment a reward 0, and a reward 1 otherwise. We note that in 

the initial dataset, most of the treatments were not administered frequently enough for accurate 

reward estimation. In fact, only three of the seven treatments—Casirivimab-Imdevimab, 

Remdesivir, and Bamlanivimab-Etesevimab—had sufficient data. Casirivimab-Imdevimab and 

Bamlanivimab-Etesevimab showed similar to each other and superior to Remdesivir success 

rates. From a clinical perspective Casirivimab–Imdevimab and Bamlanivimab–Etesevimab 



are both dual monoclonal antibody therapies authorized for the treatment of mild-to-

moderate COVID-19 in high-risk outpatients, sharing similar mechanisms of action, 

administration routes, and clinical use contexts. They were often used interchangeably 

based on availability and were considered functionally equivalent by treatment guidelines 

during their authorized periods. A real-world effectiveness study by Wynn et al. (2022) found 

an 86% probability of equivalence between the two combinations in terms of hospital-free 

days by day 28, supporting their clinical comparability in routine care settings [27]. 

Consequently, we combined Casirivimab-Imdevimab and Casirivimab-Imdevimab into one 

treatment strategy (by combining their data) so that this combined treatment strategy is now the 

new optimal one. As a result, in this case, the simulation environment consists of three hospitals 

and two different treatment options. 

 

2.7. Real Data Simulation with Death Event or Readmission as a reward 

metric 

We use both the death and readmission events as evaluation metrics for treatments, focusing on 

the patient encounter id. Specifically, for each patient encounter, we define the reward as 0 if 

there is a readmission or death event within 7 to 30 days from the last time the patient was 

administered a treatment during this encounter, and 1 otherwise. During an encounter, a patient 

is often administered multiple treatments. For each one of these treatments, we create a 

treatment-reward pair using the reward of the encounter. Finally, we use the treatment-reward 

pairs to update the estimated rewards of the treatments used in this encounter. Like Experiment 

1, our dataset sufficiently covers only three of the seven treatments—Casirivimab-Imdevimab, 

Remdesivir, and Bamlanivimab-Etesevimab. Consequently, we created a simulation environment 

that includes three hospitals and three different treatment strategies. 



 

For each one of the above two treatment outcomes, Table 1 summarizes the success rate of each 

medication and at each hospital. We observe that the same medication is consistently better 

across all three hospitals and the success rates are similar (although not the same). This is 

expected since the data were collected from the same controlled environment within the Duke 

Health System. Yet, the same medication cannot always be expected to perform best for all 

patient populations, especially if they are significantly different, e.g., at hospitals across different 

parts of the world. 

 

2.8. Artificial Simulation Environment 

To introduce heterogeneity in treatment strategies across hospitals, we created a third artificial 

simulation environment, not based on real data from Duke Clinics. In this artificial environment, 

we simulate three hospitals, mirroring the patient populations from the first two real-data 

environments, with each hospital needing to choose from three different treatment options. We 

assume each hospital has a distinct optimal treatment: Treatment 1 is best for Hospital 2, 

Treatment 2 for Hospital 1, and Treatment 3 for Hospital 3. This artificial environment is shown at 

the bottom part of Table 1. 

 

 

 

 

 

 

 

 



Evaluation Metric Mathematical Definition Analytical Description 

 
 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑟𝑒𝑤𝑎𝑟𝑑(𝑥) 

 
 

#	𝑜𝑓	𝑡𝑖𝑚𝑒𝑠	𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡	𝑥	ℎ𝑎𝑑	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑒𝑤𝑎𝑟𝑑
#	𝑜𝑓	𝑡𝑖𝑚𝑒𝑠	𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡	𝑥	𝑤𝑎𝑠	𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑒𝑑  

expected reward of the 
optimal treatment on the 
target patient population 
at each hospital defined 

as the success probability 
of the optimal treatment 

 
 

𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 

 
#	𝑜𝑓	𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠	𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑒𝑑	𝑜𝑝𝑡𝑖𝑚𝑎𝑙	𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙	#	𝑜𝑓	𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠  

the ratio between the 
number of patients that 
were treated with the 

optimal treatment divided 
by the total number of 

patients. 
 
 

𝑟𝑒𝑔𝑟𝑒𝑡 

 

𝑇 ⋅ 𝔼[𝑦(𝑥∗)] −A𝔼[𝑦(𝑥")]
#

"$%

 

the difference between 
the reward that could 
have been achieved 

using the optimal 
treatment strategy and 

the reward that was 
achieved using the 

treatment implemented 
by the MAB algorithm. 

 

Table 2. Evaluation metrics used for the comparison of the different methods. (1) The estimated 

reward (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑟𝑒𝑤𝑎𝑟𝑑) compares the considered methods in terms of their ability to correctly 

identify the optimal treatment as well as in terms of their ability to estimate its expected reward. 

(2) The regret (𝑟𝑒𝑔𝑟𝑒𝑡) measures the ability of a method to minimize the number of errors, i.e., 

the number of times an incorrect treatment is administered to a patient. (3) Finally, the success 

rate (𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑟𝑎𝑡𝑒) of each method. The better the method the higher the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 and the 

lower the regret of the trial. 

 

2.9. Evaluation Metrics 

 We compare our proposed method with the baselines adopted currently in treatment allocation 

tasks in terms of the metrics: (1) 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑟𝑒𝑤𝑎𝑟𝑑, (2) 𝑟𝑒𝑔𝑟𝑒𝑡 and (3) 𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 that are 

described in Table 2. 

 







 



Figure 3. Plots of experimental results. Subfigures (a)-(c) show results for the Real Data 

Simulation with the Death Event as a reward metric, subfigures (d)-(f) show results for the Real 

Data Simulation with the Death Event or Readmission as a reward metric, and subfigures (g)-(i) 

show results for the Artificial Simulation Environment. 

 

3. RESULTS 

3.1. Numerical Analysis 

In the Real Data Simulation with the Death Event as a reward metric, the methods evaluated 

are all very accurate in estimating the true expected reward associated with the optimal treatment 

in every hospital, as depicted in Figure 3a. The approaches CausalAdapUCB, AdapUCB, and 

GlobalUCB demonstrate significant efficiency, requiring 75% fewer patients than LocalUCB 

across all hospitals to successfully identify the optimal treatment and achieve convergence in the 

regret metric, a finding illustrated in Figure 3b. When it comes to the accumulated regret, all 

methods perform almost the same, with GlobalUCB having slightly higher mean regret but very 

high variance in two of the three hospitals. Furthermore, when examining the success rates, 

shown in Figure 3c, it is evident that the transfer learning strategies, CausalAdapUCB, 

AdapUCB, and GlobalUCB, slightly surpass LocalUCB, by administering the optimal treatment 

to an additional 1.1% of the 10,000 patients treated over all the hospitals. Note that, in this 

experiment, each treatment allocation task only considers two treatment options. The number of 

arms/treatments in a MAB problem affects the sampling complexity and thus the difficulty in 

finding the optimal solution. Fewer treatments mean more patients per treatment, allowing quicker 

estimation of rewards and fewer patients administered with sub-optimal treatments. This is why 

in this case, all MAB-based algorithms, including LocalUCB, perform similarly across hospitals. 

 



In the Real Data Simulation with the Death Event or Readmission as a reward metric, all UCB-

based methods estimate the expected optimal reward with near-perfect accuracy, as shown in 

Figure 3d, with CausalAdapUCB demonstrating a marginal superiority in performance  over its 

counterparts across different hospitals. Notably, CausalAdapUCB exhibits the minimal regret 

among all hospitals, a result highlighted in Figure 3e. This method also shows 36% reduction in 

the number of patients required compared to AdapUCB and up to 62% fewer compared to 

LocalUCB and GlobalUCB to learn the optimal treatment strategy. Furthermore, 

CausalAdapUCB achieves the highest success rates, successfully administering the optimal 

treatment to 0.95% more patients than AdapUCB and 7.6% more than LocalUCB and GlobalUCB, 

as detailed in Figure 3f. 

 

Note that in both Real Data experiments discussed above, the optimal treatment is the same for 

all three hospitals and the expected reward of this treatment is also similar across hospitals. 

Therefore, cooperation among the hospitals with any transfer-learning based method (i.e., 

GlobalUCB, AdapUCB, and CausalAdapUCB) naturally outperforms learning treatment 

strategies independently at each hospital (i.e., LocalUCB). Even in this case, CausalAdapUCB 

still manages to outperform the other methods with respect to both the number of patients needed 

to learn the optimal treatment and the number of patients treated with the optimal treatment.  

 

Finally, in the Artificial Simulation Environment, RandTrial and GlobalUCB face challenges in 

accurately estimating the reward of the optimal treatment, particularly for hospitals that have fewer 

participants in the trials (Hospital 3), as depicted in Figure 3g. Moreover, GlobalUCB is notably 

unable to achieve convergence at Hospital 3. In contrast, the remaining three methods exhibit 

comparable performance levels, with CausalAdapUCB outperforming the others. In terms of 

regret, CausalAdapUCB stands out significantly; it requires 66% fewer patients to reach 

convergence, a substantial efficiency improvement highlighted in Figure 3h. Additionally, in 



measuring success rates across hospitals, CausalAdapUCB administered the optimal treatment 

to 1.3% more patients compared to AdapUCB, 0.3% compared to LocalUCB and 48.6% more 

patients than GlobalUCB, as shown in Figure 3i.  

 

The Artificial Simulation Environment was developed to simulate a scenario with highly 

heterogeneous patient populations across hospitals in terms of the optimal treatment strategy.  In 

this case, GlobalUCB that computes a common UCB for all hospitals, introduces bias towards 

the hospital that serves the largest patient population (Hospital 1). This bias is evident in Hospitals 

2 and 3 (hospitals with fewer patients) that settle for a sub-optimal treatment. Even Hospital 1, 

shows lower success rate since about half of the patients used to train the global model come 

from hospitals with different patient demographics. Consequently, GlobalUCB needs more 

patients to identify the optimal treatment for Hospital 1, as seen in Figure 3f and 3i. On the 

contrary, CausalAdapUCB and AdapUCB can handle heterogeneity across hospitals and, 

therefore, outperform the other methods by returning fairer treatment strategies adapted to 

individual hospital populations with CausalAdapUCB demonstrating the best performance. 

 

Note that, in all the experiments above, Hospital 3, that has the fewest participants, benefits the 

most from collaborating with other hospitals, since all collaborative methods—GlobalUCB, 

AdapUCB, and CausalAdapUCB—outperform LocalUCB. Only in the case of highly 

heterogeneous patient populations (the Artificial Simulation), does CausalAdapUCB show 

significant advantage over the rest methods for Hospital 3. On the other hand, for hospitals with 

smaller populations (Hospitals 2 and 3) CausalAdapUCB outperforms the other transfer learning 

based methods.  

 

Ablation Comparison between CausalAdapUCB and AdapUCB. To further assess the specific 

contribution of the causal inference component, we compare CausalAdapUCB directly with 



AdapUCB across all experiments. While both methods leverage cross-hospital information 

adaptively, only CausalAdapUCB integrates PUBounds  to constrain transfer from heterogeneous 

hospitals. This causal regularization yields consistently higher success rates and faster 

convergence, particularly in settings with pronounced heterogeneity, as in the Artificial Simulation 

Environment. The observed gains—ranging from 0.95% to 1.3% in success rate, for the 

homogeneous and heterogeneous cases accordingly, and up to 36% reduction in patient data 

requirements compared to AdapUCB—quantify the added value of causal knowledge transfer in 

guiding treatment selection under non-uniform hospital populations. 

 

3.2. Discussion 

A key challenge often encountered in treatment recommendation tasks is the lack of sufficient 

numbers of participants needed to learn an optimal treatment strategy. In this work, we address 

this challenge by designing a federated learning method that leverages collaboration across 

multiple hospitals conducting individual learning procedures to compensate for limited numbers 

of participants. Specifically, collaboration between hospitals increases the information they can 

obtain on the available treatments beyond what is possible with local data, leading to fewer 

participants needed in each hospital. The proposed federation is coordinated by a lead hospital 

that only has access to aggregate local hospital data without any patient sensitive information, 

thus protecting patient privacy [19]. The effect of collaboration can be observed in the two real-

data simulations, where the number of participants needed by collaborative methods 

(GlobalUCB, AdapUCB, CausalAdapUCB) is lower compared to that needed by non-

collaborative methods (LocalUCB, RandTrial). Therefore, federated learning allows to learn the 

optimal treatment at each hospital faster. In the case of clinical trials for example, this could also 

lead to significant cost savings related to the recruitment of trial participants.  



Along with sufficient subject participation, equally important is fairness of the learned optimal 

treatment strategies across all patients, meaning that these treatment strategies are free of any 

biases caused by any subgroup of patients’ populations. Fairness becomes even more important 

in collaborative procedures where information can be shared across hospitals and, as a result, 

biases can be introduced in the learned treatments. In our experiments, we observe that 

GlobalUCB that computes one common UCB for all hospitals suffers in terms of fairness, since 

it learns treatment strategies biased towards hospitals that serve larger patient populations. This 

limitation of GlobalUCB is addressed by AdapUCB that clusters similar hospitals allowing only 

those to collaborate. In this way, AdapUCB does not introduce bias in the learned optimal 

treatment strategies (like LocalUCB), however, since it uses data from fewer hospitals, it requires 

more participants to learn the optimal treatment strategies. To ensure fairness of the learned 

treatment strategies, like AdapUCB, our CausalAdapUCB method clusters similar hospitals that 

can safely share information with each other, but it also employs causal inference to transfer 

knowledge on treatment effects (in the form of PUBounds) across heterogeneous hospitals 

without introducing bias. Specifically, CausalAdapUCB transfers more conservative PUBounds 

to hospitals with fewer patient participants, which protects these hospitals from learning treatment 

strategies that are biased towards hospitals with larger patient populations. If the hospitals are 

similar, the use of PUBounds in CausalAdapUCB offers no measurable advantage over 

GlobalUCB and AdapUCB. However, if the hospitals are heterogeneous, CausalAdapUCB 

allows small hospitals to learn unbiased treatment strategies even though they have fewer patient 

participants. On the other hand, PUBounds transferred by CausalAdapUCB to larger hospitals 

with more patient participants are less conservative, allowing these hospitals to refine their 

exploration of treatment options and learn an unbiased optimal treatment strategy faster, using 

fewer patient participants. As a result, CausalAdapUCB outperforms the other methods in terms 

of both learning fairer treatment strategies and needing fewer participants to learn the optimal 

ones.  



Finally, it is critical that during the learning process of a treatment recommendation task we 

maximize patients’ safety. Randomized treatment allocation increases the risk to participants, 

since more subjects are administered with sub-optimal treatments. In contrast, CausalAdapUCB 

is designed to adapt its treatment recommendations as more data are collected. In our 

experiments, we show that this adaptive nature of the algorithm reduces the number of patients 

administered with ineffective treatments, regardless of how similar or heterogeneous the hospitals 

are, or how many treatment options are explored during the process. Therefore, 

CausalAdapUCB improves the safety of these learning procedures compared to randomized 

approaches or other state-of-the-art MAB methods.  

 

From a translational perspective, the proposed framework can naturally serve as a coordination 

mechanism for multi-site adaptive clinical trials or learning health system initiatives, enabling 

hospitals to collaboratively update treatment allocation strategies using real-world evidence while 

retaining patient-level data locally. 

 

Limitations.  

Deployment considerations. Practical deployment of the proposed framework would require 

addressing several operational constraints. Communication overhead increases with the number 

of participating hospitals and the frequency of communication rounds, and in real-world settings 

this can be managed by tuning the communication interval or triggering updates only when 

uncertainty is sufficiently high. In addition, although raw patient-level data are never exchanged, 

the transfer of aggregated statistics still requires appropriate security safeguards, including 

authenticated and encrypted communication, access control and auditing at the coordinating 

institution to limit information leakage. 

Our proposed method is an online algorithm suitable for treatment recommendation settings, 

where patients arrive sequentially and decisions must be made dynamically as new outcomes are 



observed. Because the algorithm updates its estimates iteratively after each treatment–outcome 

pair, it requires an interactive setting that mimics real-time decision-making. As such, it cannot be 

directly applied to static retrospective datasets without significant modifications, since those 

datasets do not capture the sequential feedback loop that drives the algorithm. Consequently, we 

evaluated the algorithm using a simulation environment. This simulator, constructed using real 

Covid-19 data, closely replicates real-world scenarios. As a result, the findings from our 

simulations provide valuable information on how our algorithm would have performed if it had 

been deployed during the treatment recommendation task at the time. The development of 

federated treatment allocation strategies that can directly learn from historical data and do not 

require real-time interaction with patients is of great interest and currently part of our future work. 

Moreover, sharing patients’ sensitive information across hospitals is a violation of their privacy, 

and as a result designing a personalized treatment allocation strategy for every patient in the 

federated setting is a demanding task. The safest first step towards this direction is to design 

personalized strategies for each hospital. We therefore work under the assumption that patients 

of the same hospital have similar reactions to every treatment. In this setting, we show that at the 

population level our treatment allocation policy performs optimally, since it manages to decrease 

the number of patients treated with sub-optimal treatments and affect individual patient outcomes. 

Extending our work to patient-level frameworks that design personalized treatment allocation 

strategies for each individual patient while protecting their privacy constraints is part of our future 

work.  

 

4. CONCLUSION 

In this paper, we propose an adaptive federated learning strategy for treatment treatment 

recommendation tasks. We formulate the problem as a federated Multi-Armed Bandit problem 

where hospitals that potentially serve different patient populations cooperate to learn their local 



optimal treatments. We test our proposed approach for treatment allocation tasks on a simulated 

clinical trial environment created using real Covid-19 data from the Duke University Health System 

and show that it outperforms other state of the art methods, by learning the optimal treatment for 

each hospital faster and with fewer number of patient-participants, while also satisfying privacy, 

fairness, and safety requirements. 
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