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ABSTRACT

Objective. In this paper, we propose an adaptive federated learning framework to learn optimal
treatments for individual hospitals that possibly serve different patient populations. The proposed
framework can enable the design of more efficient treatment allocation problems.

Methods. We propose a federated treatment recommendation strategy that for each hospital is
formulated as a Multi-Armed Bandit (MAB) problem. The process is coordinated by a lead hospital
that adaptively learns and transfers Upper Confidence Bounds (UCB) across similar hospitals and
Personalized Upper Bounds across heterogeneous hospitals. We test our proposed method on a
simulated clinical trial environment created using real Covid-19 data from the Duke University
Health System.

Results. Our method relies on collaboration among hospitals, which allows for fewer data
samples needed per institution, while protecting the privacy of the individual patient data. At the
same time, it ensures fairness of the learned treatments by mitigating possible biases due to
differences in the patient populations treated across different hospitals. Finally, our method
improves the safety of the learning procedure by reducing the number of patients administered
with sub-optimal treatments at each hospital. In the experiments, we show that our proposed
method outperforms other state of the art approaches in that it requires up to 36%-75% fewer
patient data to learn the optimal treatment for each hospital and administers the optimal treatment
to 0.95%-48.6% more patients.

Conclusion. In this paper, we propose an adaptive federated learning strategy for treatment
recommendation tasks, that learns optimal treatments for individual hospitals that possibly serve

different patient populations, while satisfying privacy, fairness, and safety considerations.



1. INTRODUCTION

1.1 Background

Providing personalized and optimized treatment recommendations is a critical challenge in the
healthcare industry, with broad applications. Adaptive treatment strategies are increasingly
essential in chronic disease management (e.g., diabetes, hypertension), oncology, mental health
care, emergency medicine, post-acute rehabilitation, where treatment efficacy and safety often
depend on patient-specific factors such as comorbidities, demographics, and genetic profiles [1,
2]. In clinical trials, personalized allocation can reduce sample size requirements and improve trial
efficiency through adaptive randomization [3]. In real-world healthcare delivery, intelligent
decision support systems can dynamically recommend treatments based on evolving clinical data
and institutional constraints [4]. Al-enabled population health platforms also enable stratified care
pathways, helping health systems target interventions to high-risk individuals while reducing
unnecessary treatment for lower-risk patients [5]. As artificial intelligence (Al) and machine
learning technologies continue to mature, there is a growing opportunity to develop adaptive
frameworks that leverage electronic health records (EHR), imaging, genomics, and patient-
reported outcomes to generate data-driven treatment plans that are both scalable and

personalized, ultimately improving safety, efficacy, and equity in healthcare delivery.

Providing adaptive treatment recommendations in both clinical trials and real-world healthcare
settings is typically formulated as an adaptive treatment allocation problem. This refers to a
sequential decision-making procedure in which the probability of administering a specific
treatment to a patient, changes based on previous observations. Multi-Armed Bandit (MAB)
algorithms [6] are particularly suited to solve this problem, e.g., for facilitating treatment allocation
[7] and dose-finding [8, 9] or for tailoring treatment strategies [10], as they can effectively navigate

the balance between exploration and exploitation of treatments. On top of this, when treatment



allocation strategies need to be personalized to each individual, the contextual variation of MAB
is utilized for covariate-based decision making [10, 11, 12]. However, one critical barrier when
deploying MAB algorithms is that MAB performance can degrade substantially when applied to
small datasets, which often arise in observational healthcare settings or when off-policy evaluation
is required [13]. This challenge is further exacerbated by the difficulty of recruiting enough patients
in clinical trials, where participation rates are typically low [14, 15]. Thus, while MAB algorithms
are well-suited to many healthcare decision-making problems in theory, their effectiveness in
practice is often hindered by data scarcity. To mitigate this issue, federated learning methods can
be used to leverage distributed knowledge from similar machine learning procedures conducted
across different hospitals. Recent advances in federated MAB algorithms [16, 17] have typically
involved sharing model parameters and combining information only across similar institutions. In
contrast, our framework exchanges only treatment—outcome pairs and returns information that
leverages data from both similar and dissimilar hospitals, enabling broader and more robust
collaboration. Moreover, the deployment of such approaches in healthcare remains under-

explored.

1.2 Significance

Two well-known challenges in the real-world application of treatment recommendation systems
are the lack of subject participation and the possible risks for patients due to sub-optimal treatment
allocation strategies. To address these challenges, we propose a new cooperative adaptive
treatment allocation design that relies on federated learning to allow hospitals to share aggregated
information and, as a result, learn their optimal treatment strategies even with fewer participants.
Since sharing individual patient data across hospitals raises privacy concerns, we design our
framework to learn hospital-specific policies, which aggregate knowledge at the institutional level

without exposing individual records. To support effective collaboration under this design, we



incorporate clustering and causal inference techniques [18], which enable knowledge sharing
among both similar and heterogeneous hospitals. Finally, these techniques are used in a MAB
framework with a focus on upholding patient privacy [19] (since no raw patient-level data are
shared across hospitals), ensuring fairness [20], and improving participant safety (as our
allocation process prioritizes assigning the most promising treatment rather than randomizing

arbitrarily).

To evaluate our proposed design, we focused on a Covid-19 treatment allocation problem. Given
the urgent need for new Covid treatments at the time [21], numerous trials were conducted at
healthcare facilities around the world. Under those circumstances, federated learning would have
provided an excellent opportunity to help coordinate and expedite the discovery of effective Covid
treatments. Specifically, we use Covid-19 data available in the Duke Health System to create a
simulation environment and test our method’s performance, as it is usually done in similar medical
applications [22]. We create this environment with a similar strategy as illustrated in [23], using
retrospective electronic health records data (EHR) from three Duke hospitals, which allows us to
accurately replicate real-world scenarios and rigorously test our model's efficacy and adaptability.
Finally, we have designed our method to align with TRIPOD guidelines as described in the
supplementary materials. To our knowledge, this is the first instance of a federated learning
approach that amalgamates clustering methods and causal inference within an online MAB

framework for treatment allocation tasks.

Statement Of Significance
o Problem: Multiple hospitals are engaged in the same treatment allocation task, yet these
efforts are typically conducted in isolation.
o What is Already Known: Prior research has explored adaptive treatment allocation

strategies, which aim to optimize patient outcomes during the learning phase by



dynamically adjusting treatment assignments. However, existing approaches do not
leverage the fact that similar learning tasks are being independently undertaken at multiple
institutions.

e What this paper Adds: This paper introduces a novel framework for Collaborative
Adaptive Learning in the context of treatment allocation. The proposed method facilitates
knowledge sharing among homogeneous hospitals (homogeneous hospitals), and even
enables knowledge transfer across institutions serving demographically heterogeneous
patient populations.

¢ Who would benefit from this knowledge in this paper: Clinicians and healthcare
practitioners seeking to implement adaptive treatment strategies with limited patient data.
The proposed approach enhances learning efficiency and patient safety by utilizing

insights gained collaboratively across institutions.

2. MATERIALS AND METHODS

2.1 Problem Set Up

We consider a collection of H non-identical hospitals serving different patient populations in terms
of both patient distributions and patient numbers. Each hospital h € 7 = {1,---, H} conducts a
treatment allocation task with the objective to learn a treatment x; € X = {1,---,X}among X
possible treatment options, that is optimal for the average patient in its local population group. We
formulate the treatment allocation strategy at every hospital h as a Multi-Armed Bandit (MAB)
problem defined by the tuple (X, {V,(x)},ex), Where x € X denotes a treatment option and
Y,(x) = P(y|x) is an unknown probability distribution of the treatment outcome y given a
treatment x € X that depends on the patient population that each hospital serves. Here we

assume a binary treatment outcome y = {0,1} so that y = 1 if a patient responded well to a



treatment and y = 0 otherwise. Furthermore, we assume that patient arrivals at hospitals follow
a distribution P(h)Vh € #. Then, for every new patient that arrives at hospital h, a treatment x;, , €
X is selected and a reward yj, (xp, ¢)~Y, (x ¢) is observed. The optimal treatment strategy x; € X
at hospital h is defined as the one that maximizes the expected reward up to time step ¢, i.e., x;, =

argmaxex E[Y, (x)].

To learn the optimal treatment strategy x;, at each local hospital h and accurately estimate the
unknown distribution of treatment outcomes Y}, (x},), the MAB needs to identify the most effective
treatment by (i) exploring different treatment options and (ii) exploiting the current best treatment
x, ¢ to increase confidence in the current best treatment and maximize patient benefit from this
treatment. Managing this balance between exploration and exploitation in a MAB problem is key

in learning the optimal treatment strategy fast, using as few data samples as possible.

2.2 Proposed Method

To improve the data efficiency of the MAB problem, we propose a federated approach in which
hospitals collaborate through a designated lead institution. Each hospital continues to operate its
own treatment allocation task locally but shares with the lead hospital the treatment x
administered to patient ¢ along with the corresponding binary outcome y; ,(x). Importantly, no
patient-level records are exchanged, ensuring that sensitive data remain within each institution
and preserving patient privacy. Once the lead hospital has received T data samples across all
participating hospitals, a Communication Round (CR) is triggered.

During each CR, the lead hospital determines what information to return to every participating
hospital. For each hospital h, it identifies a set of hospitals S;, that are sufficiently similar in terms

of their estimated optimal treatment and its expected reward via the following criterion:

Sn=1{h€H|x;= x; and |V, (x3) = Y5(x5)| < €}



where:
e x; is the current estimated optimal treatment at hospital h,
e Y,(xp) is its expected reward,
e ¢ is atunable similarity threshold

This criterion ensures hospitals are clustered only when they share the same optimal treatment

and have similar estimated performance.

Once the cluster for each hospital is defined, for each treatment x, the lead hospital aggregates
all observed outcomes from the hospitals in that cluster between the current and the previous CR.
Let ¢t denote the patient index within each hospital, and x,, ; the treatment chosen that patient by

hospital h. Then, the accumulated reward for treatment x across the hospitals in Sy, is
Yare(X) = Ties, Ytecrixy =x Ve i (%),
and the number of times treatment x has been administered within that cluster is
N (x) = Tges, |{t: x5, = x}].

The total number of treatments administered across all treatments in that cluster is then:

NSh = 2 NSh (%)

xX€EX

Using these aggregated quantities, the lead hospital computes the Aggregate Upper

Confidence Bound (AggrUCB) for each treatment x and each hospital h as:

Sh log (NSh
AggrUCB(Yh(x)):%+c (;\{/;%(x))

where c is a positive exploration coefficient controlling how aggressively the algorithm balances
exploration (trying new treatments) versus exploitation (selecting the currently best-performing

treatment). This form computes classical UCB formula over aggregated cluster-level data



rather than individual hospital data, which provide hospital h with a more informed Upper

Confidence Bound.

For hospitals that are not considered similar according to the previous criterion, the lead hospital
computes Personalized Upper Bounds on Treatment Effects (PUBound). These bounds allow
safe knowledge transfer across heterogeneous hospitals where patient populations and treatment

responses differ.

Based on the causal inference formulation in [18], the lead hospital uses the aggregated
information from all the hospitals to compute upper and lower bounds on the expected reward of
each treatment:
Leausai(Y(x)) = Prob(Treatment = x,y = 1),
UCausal(Y(X)) = 1 — Prob(Treatment = x,y = 0),
Furthermore, using information on the patient distribution across hospitals, the lead hospital can
analyze the expected reward of each treatment for each hospital individually as follows:
Y(x) = Zhen P(MYr(x) (1)

Based on equation (1) and the causal upper and lower bounds computed before, for each hospital
h and treatment x the lead hospital then computes Personalized Upper Bound for Y}, (x) by solving

the following optimization problem:

maximize UBound(Y,(x))
SUbjeCt to LCausal(Y(x)) < ZhEHP(h)UBound(Yh(x)) < UCausal(Y(x))’
LCB(Y,(x)) < UBound(Y,(x)) < UCB(Y,(x))Vh € H.

where LCB and UCB denote the lower and upper aggregated confidence bounds:

Sh =S Sh TS
Yacc(®) 1 |log (N°h) Yace®) ¢+ [log (N°h)
LCB(Yn(x)) = 3855 — ¢ \ wsngm and UCB(Ya(0) = 3 + ¢ R




Here, c' is a confidence coefficient controlling how conservative the personalized bounds are.
This optimization yields UBound(Y,(x)), a Personalized Upper Bound that incorporates

knowledge from dissimilar hospitals while preserving privacy.

The results of this analysis—AggrUCB values for clusters of similar hospitals and PUBound
values for dissimilar ones—are communicated back to the local institutions. Each hospital
integrates these quantities into its own MAB algorithm, replacing the standard UCB with the tighter
of the two values. In this way, hospitals avoid unnecessary exploration of treatments already
known to perform poorly, while still retaining the ability to discover effective strategies for their
unique populations. This iterative process of patient arrivals, local treatment assignment, periodic
communication, and federated updating gives rise to our proposed CausalAdapUCB algorithm.
An illustration of the method is provided in Figure 1, a complete mathematical description is
available in the Supplementary Appendix, and our implementation can be accessed at:

https://github.com/xeniakonti/FL-Framework-for-treatment-allocation.



https://github.com/xeniakonti/FL-Framework-for-treatment-allocation
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Figure 1. The figure describes the federating process suggested in the paper. The hospitals that
participate in the system may serve similar or different patient populations, and they model their
corresponding treatment allocation task as a Multi-Armed Bandit problem. The federating process
is coordinated by a Lead Hospital that is responsible for clustering hospitals according to how
similar their patient populations are and then computing and transferring information that is

personalized to each hospital individually.



2.3. Methods for Comparison

To evaluate the effectiveness of our method, we benchmark it against several existing treatment
assignment strategies commonly used in allocation problems, including (1) RandTrial [24, 25]: a
randomized treatment assignment, where for every patient the treatment is selected randomly,
(2) LocalUCB [26]: a standard multi-armed bandit algorithm where each hospital independently
executes a UCB policy using only its local data, without any form of collaboration, (3) GlobalUCB:
a fully pooled approach in which all hospitals are treated as a single entity, and a global UCB is
computed using data from the entire population, ignoring hospital-level heterogeneity, and (4)
AdapUCB: a partially collaborative design where a lead hospital computes and transfers only the
aggregate UCB value across institutions, without propagating personalized upper bounds tailored
to local hospital populations. Together, these methods provide meaningful points of comparison:
RandTrial as a traditional clinical baseline, LocalUCB and GlobalUCB as canonical MAB
implementations at the local and global levels, and AdapUCB as an intermediate ablation to
isolate the contribution of personalized upper bounds. We deploy each of these methods
independently within the test environments we design and compare their performance against our
proposed approach. Details of the evaluation metrics and simulation environments are provided

in the subsequent sections.

2.4. Dataset Description

We use historical data of Duke patients diagnosed and treated for Coronavirus disease 19 (Covid-
19) from year 2020 to year 2021, obtained from the Duke Clinical Research Data Mart, which
provides access to Duke patient data since the beginning of 2014. Specifically, the dataset
consists of 21,482 different patients who had at least one U07.1 (“COVID-19, virus identified”), an
ICD-10 diagnosis code or a positive SARS-CoV-2 reverse transcription polymerase chain reaction

(PCR) test result recorded within the healthcare data. Every patient in the dataset may have



visited a Duke hospital multiple times. Each patient visit is considered a new patient encounter
and is characterized by a unique encounter id. During each encounter, a patient may have
received multiple medications. We only consider inpatient encounters, that is patients who were
treated solely at Duke hospitals and didn’t visit non-Duke hospitals. For every patient encounter,
the dataset includes information on the patient’'s demographic characteristics (e.g. age, race), the
dates they were administered Covid-19 medications during their visit, the type of medications,
and the treatment outcome, i.e., whether they died and when. Figure 2c shows the patient
distribution in terms of their age and race. The treatments used during the period that the data
were collected are Treatments = {Ritonavir, Bamlanivimab, Casirivimab-Imdevimab, Remdesivir,

Ritonavir Nirmatrelvir, Sotrovimab, Bamlanivimab Etesevimab}.

2.5. Simulation Environment

To simulate an environment consisting of multiple heterogeneous hospitals conducting the same
treatment allocation task, we split the data into different groups, each one modeling an individual
hospital. We introduce heterogeneity in the hospital populations by biasing each hospital’s data
with respect to the patients’ age. Specifically, 82.8% of patients that visit Hospital 1 are younger
than 40, 17% are between 40 and 80, and 0.2% are older than 80. Additionally, 23.3% of patients
that visit Hospital 2 are younger than 40, 76.3% are between 40 and 80, and 0.3% are older than
80. Finally, 59.4% of patients that visit Hospital 3 are younger than 40, 26.6% are between 40
and 80, and 13% are older than 80. In this way, Hospital 1 is assigned 49% of the total patient
population in the historical dataset, Hospital 2 is assigned 37% of it, and Hospital 3 is assigned
14% of it. The distribution of patients across the three hospitals in terms of their age and race is
shown in Figure 2a-2b. To evaluate the different treatment options at the three simulated hospital
environments, we use the following two metrics: i) whether any patient died after receiving a

treatment and ii) whether they were re-hospitalized.
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Figure 2. This figure displays the demographic distribution of Duke patients diagnosed with
COVID-19, broken down by age and race. Subfigure 2a presents the aggregated age and race

distribution across all hospitals. Subfigure 2b shows the race distribution for each of the three



hospitals considered in our experiments, and subfigure 2c shows the corresponding age

distribution.
Name of Treatment Hospital 1 Hospital 2 Hospital 3
Real Data with Death Event Reward
Casirivimab-Imdevimab 0.988 0.981 0.96
Remdesivir 0.86 0.81 0.76
Real Data with Death Event or Readmission Reward
Casirivimab-Imdevimab 0.63 0.62 0.6
Remdesivir 0.79 0.75 0.7
Bamlanivimab-Etesevimab 0.61 0.54 0.55
Artificial Simulation Environment

Treatment 1 0.3 0.9 0.2
Treatment 2 0.8 0.5 0.7
Treatment 3 0.6 0.1 0.9

Table 1. Summary of the expected reward of each treatment for each hospital for different

outcomes, with artificial hospital segmentation and optimal medication strategies.

2.6. Real Data Simulation with Death Event as a reward metric

In this case, we consider the death event metric, and every time a treatment is administered to a
patient, we examine whether the patient died within 7 to 30 days after receiving the treatment. If
the patient dies, we assign the treatment a reward 0, and a reward 1 otherwise. We note that in
the initial dataset, most of the treatments were not administered frequently enough for accurate
reward estimation. In fact, only three of the seven treatments—Casirivimab-Imdevimab,
Remdesivir, and Bamlanivimab-Etesevimab—had sufficient data. Casirivimab-Imdevimab and
Bamlanivimab-Etesevimab showed similar to each other and superior to Remdesivir success

rates. From a clinical perspective Casirivimab-Imdevimab and Bamlanivimab-Etesevimab



are both dual monoclonal antibody therapies authorized for the treatment of mild-to-
moderate COVID-19 in high-risk outpatients, sharing similar mechanisms of action,
administration routes, and clinical use contexts. They were often used interchangeably
based on availability and were considered functionally equivalent by treatment guidelines
during their authorized periods. A real-world effectiveness study by Wynn et al. (2022) found
an 86% probability of equivalence between the two combinations in terms of hospital-free
days by day 28, supporting their clinical comparability in routine care settings [27].

Consequently, we combined Casirivimab-Imdevimab and Casirivimab-Imdevimab into one
treatment strategy (by combining their data) so that this combined treatment strategy is now the
new optimal one. As a result, in this case, the simulation environment consists of three hospitals

and two different treatment options.

2.7. Real Data Simulation with Death Event or Readmission as a reward

metric

We use both the death and readmission events as evaluation metrics for treatments, focusing on
the patient encounter id. Specifically, for each patient encounter, we define the reward as O if
there is a readmission or death event within 7 to 30 days from the last time the patient was
administered a treatment during this encounter, and 1 otherwise. During an encounter, a patient
is often administered multiple treatments. For each one of these treatments, we create a
treatment-reward pair using the reward of the encounter. Finally, we use the treatment-reward
pairs to update the estimated rewards of the treatments used in this encounter. Like Experiment
1, our dataset sufficiently covers only three of the seven treatments—Casirivimab-Imdevimab,
Remdesivir, and Bamlanivimab-Etesevimab. Consequently, we created a simulation environment

that includes three hospitals and three different treatment strategies.



For each one of the above two treatment outcomes, Table 1 summarizes the success rate of each
medication and at each hospital. We observe that the same medication is consistently better
across all three hospitals and the success rates are similar (although not the same). This is
expected since the data were collected from the same controlled environment within the Duke
Health System. Yet, the same medication cannot always be expected to perform best for all
patient populations, especially if they are significantly different, e.g., at hospitals across different

parts of the world.

2.8. Artificial Simulation Environment

To introduce heterogeneity in treatment strategies across hospitals, we created a third artificial
simulation environment, not based on real data from Duke Clinics. In this artificial environment,
we simulate three hospitals, mirroring the patient populations from the first two real-data
environments, with each hospital needing to choose from three different treatment options. We
assume each hospital has a distinct optimal treatment: Treatment 1 is best for Hospital 2,
Treatment 2 for Hospital 1, and Treatment 3 for Hospital 3. This artificial environment is shown at

the bottom part of Table 1.



Evaluation Metric

Mathematical Definition

Analytical Description

estimated_reward(x)

# of times treatment x had positive reward

# of times treatment x was administered

expected reward of the
optimal treatment on the
target patient population
at each hospital defined
as the success probability
of the optimal treatment

success_rate

# of patients administered optimal treatment

total # of patients

the ratio between the
number of patients that
were treated with the
optimal treatment divided
by the total number of
patients.

regret

7Bl - ) )]

the difference between
the reward that could
have been achieved
using the optimal
treatment strategy and
the reward that was
achieved using the
treatment implemented
by the MAB algorithm.

Table 2. Evaluation metrics used for the comparison of the different methods. (1) The estimated

reward (estimated_reward) compares the considered methods in terms of their ability to correctly

identify the optimal treatment as well as in terms of their ability to estimate its expected reward.

(2) The regret (regret) measures the ability of a method to minimize the number of errors, i.e.,

the number of times an incorrect treatment is administered to a patient. (3) Finally, the success

rate (success_rate) of each method. The better the method the higher the success_rate and the

lower the regret of the trial.

2.9. Evaluation Metrics

We compare our proposed method with the baselines adopted currently in treatment allocation

tasks in terms of the metrics: (1) estimated_reward, (2) regret and (3) success_rate that are

described in Table 2.
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Figure 3. Plots of experimental results. Subfigures (a)-(c) show results for the Real Data
Simulation with the Death Event as a reward metric, subfigures (d)-(f) show results for the Real
Data Simulation with the Death Event or Readmission as a reward metric, and subfigures (g)-(i)

show results for the Artificial Simulation Environment.

3. RESULTS

3.1. Numerical Analysis

In the Real Data Simulation with the Death Event as a reward metric, the methods evaluated
are all very accurate in estimating the true expected reward associated with the optimal treatment
in every hospital, as depicted in Figure 3a. The approaches CausalAdapUCB, AdapUCB, and
GlobalUCB demonstrate significant efficiency, requiring 75% fewer patients than LocalUCB
across all hospitals to successfully identify the optimal treatment and achieve convergence in the
regret metric, a finding illustrated in Figure 3b. When it comes to the accumulated regret, all
methods perform almost the same, with GlobalUCB having slightly higher mean regret but very
high variance in two of the three hospitals. Furthermore, when examining the success rates,
shown in Figure 3c, it is evident that the transfer learning strategies, CausalAdapUCB,
AdapUCB, and GlobalUCB, slightly surpass LocalUCB, by administering the optimal treatment
to an additional 1.1% of the 10,000 patients treated over all the hospitals. Note that, in this
experiment, each treatment allocation task only considers two treatment options. The number of
arms/treatments in a MAB problem affects the sampling complexity and thus the difficulty in
finding the optimal solution. Fewer treatments mean more patients per treatment, allowing quicker
estimation of rewards and fewer patients administered with sub-optimal treatments. This is why

in this case, all MAB-based algorithms, including LocalUCB, perform similarly across hospitals.



In the Real Data Simulation with the Death Event or Readmission as a reward metric, all UCB-
based methods estimate the expected optimal reward with near-perfect accuracy, as shown in
Figure 3d, with CausalAdapUCB demonstrating a marginal superiority in performance over its
counterparts across different hospitals. Notably, CausalAdapUCB exhibits the minimal regret
among all hospitals, a result highlighted in Figure 3e. This method also shows 36% reduction in
the number of patients required compared to AdapUCB and up to 62% fewer compared to
LocalUCB and GlobalUCB to learn the optimal treatment strategy. Furthermore,
CausalAdapUCB achieves the highest success rates, successfully administering the optimal
treatment to 0.95% more patients than AdapUCB and 7.6% more than LocalUCB and GlobalUCB,

as detailed in Figure 3f.

Note that in both Real Data experiments discussed above, the optimal treatment is the same for
all three hospitals and the expected reward of this treatment is also similar across hospitals.
Therefore, cooperation among the hospitals with any transfer-learning based method (i.e.,
GlobalUCB, AdapUCB, and CausalAdapUCB) naturally outperforms learning treatment
strategies independently at each hospital (i.e., LocalUCB). Even in this case, CausalAdapUCB
still manages to outperform the other methods with respect to both the number of patients needed

to learn the optimal treatment and the number of patients treated with the optimal treatment.

Finally, in the Artificial Simulation Environment, RandTrial and GlobalUCB face challenges in
accurately estimating the reward of the optimal treatment, particularly for hospitals that have fewer
participants in the trials (Hospital 3), as depicted in Figure 3g. Moreover, GlobalUCB is notably
unable to achieve convergence at Hospital 3. In contrast, the remaining three methods exhibit
comparable performance levels, with CausalAdapUCB outperforming the others. In terms of
regret, CausalAdapUCB stands out significantly; it requires 66% fewer patients to reach

convergence, a substantial efficiency improvement highlighted in Figure 3h. Additionally, in



measuring success rates across hospitals, CausalAdapUCB administered the optimal treatment
to 1.3% more patients compared to AdapUCB, 0.3% compared to LocalUCB and 48.6% more

patients than GlobalUCB, as shown in Figure 3i.

The Artificial Simulation Environment was developed to simulate a scenario with highly
heterogeneous patient populations across hospitals in terms of the optimal treatment strategy. In
this case, GlobalUCB that computes a common UCB for all hospitals, introduces bias towards
the hospital that serves the largest patient population (Hospital 1). This bias is evident in Hospitals
2 and 3 (hospitals with fewer patients) that settle for a sub-optimal treatment. Even Hospital 1,
shows lower success rate since about half of the patients used to train the global model come
from hospitals with different patient demographics. Consequently, GlobalUCB needs more
patients to identify the optimal treatment for Hospital 1, as seen in Figure 3f and 3i. On the
contrary, CausalAdapUCB and AdapUCB can handle heterogeneity across hospitals and,
therefore, outperform the other methods by returning fairer treatment strategies adapted to

individual hospital populations with CausalAdapUCB demonstrating the best performance.

Note that, in all the experiments above, Hospital 3, that has the fewest participants, benefits the
most from collaborating with other hospitals, since all collaborative methods—GlobalUCB,
AdapUCB, and CausalAdapUCB—outperform LocalUCB. Only in the case of highly
heterogeneous patient populations (the Artificial Simulation), does CausalAdapUCB show
significant advantage over the rest methods for Hospital 3. On the other hand, for hospitals with
smaller populations (Hospitals 2 and 3) CausalAdapUCB outperforms the other transfer learning

based methods.

Ablation Comparison between CausalAdapUCB and AdapUCB. To further assess the specific

contribution of the causal inference component, we compare CausalAdapUCB directly with



AdapUCB across all experiments. While both methods leverage cross-hospital information
adaptively, only CausalAdapUCB integrates PUBounds to constrain transfer from heterogeneous
hospitals. This causal regularization yields consistently higher success rates and faster
convergence, particularly in settings with pronounced heterogeneity, as in the Artificial Simulation
Environment. The observed gains—ranging from 0.95% to 1.3% in success rate, for the
homogeneous and heterogeneous cases accordingly, and up to 36% reduction in patient data
requirements compared to AdapUCB—quantify the added value of causal knowledge transfer in

guiding treatment selection under non-uniform hospital populations.

3.2. Discussion

A key challenge often encountered in treatment recommendation tasks is the lack of sufficient
numbers of participants needed to learn an optimal treatment strategy. In this work, we address
this challenge by designing a federated learning method that leverages collaboration across
multiple hospitals conducting individual learning procedures to compensate for limited numbers
of participants. Specifically, collaboration between hospitals increases the information they can
obtain on the available treatments beyond what is possible with local data, leading to fewer
participants needed in each hospital. The proposed federation is coordinated by a lead hospital
that only has access to aggregate local hospital data without any patient sensitive information,
thus protecting patient privacy [19]. The effect of collaboration can be observed in the two real-
data simulations, where the number of participants needed by collaborative methods
(GlobaluCB, AdapUCB, CausalAdapUCB) is lower compared to that needed by non-
collaborative methods (LocalUCB, RandTrial). Therefore, federated learning allows to learn the
optimal treatment at each hospital faster. In the case of clinical trials for example, this could also

lead to significant cost savings related to the recruitment of trial participants.



Along with sufficient subject participation, equally important is fairness of the learned optimal
treatment strategies across all patients, meaning that these treatment strategies are free of any
biases caused by any subgroup of patients’ populations. Fairness becomes even more important
in collaborative procedures where information can be shared across hospitals and, as a result,
biases can be introduced in the learned treatments. In our experiments, we observe that
GlobalUCB that computes one common UCB for all hospitals suffers in terms of fairness, since
it learns treatment strategies biased towards hospitals that serve larger patient populations. This
limitation of GlobalUCB is addressed by AdapUCB that clusters similar hospitals allowing only
those to collaborate. In this way, AdapUCB does not introduce bias in the learned optimal
treatment strategies (like LocalUCB), however, since it uses data from fewer hospitals, it requires
more participants to learn the optimal treatment strategies. To ensure fairness of the learned
treatment strategies, like AdapUCB, our CausalAdapUCB method clusters similar hospitals that
can safely share information with each other, but it also employs causal inference to transfer
knowledge on treatment effects (in the form of PUBounds) across heterogeneous hospitals
without introducing bias. Specifically, CausalAdapUCB transfers more conservative PUBounds
to hospitals with fewer patient participants, which protects these hospitals from learning treatment
strategies that are biased towards hospitals with larger patient populations. If the hospitals are
similar, the use of PUBounds in CausalAdapUCB offers no measurable advantage over
GlobalUCB and AdapUCB. However, if the hospitals are heterogeneous, CausalAdapUCB
allows small hospitals to learn unbiased treatment strategies even though they have fewer patient
participants. On the other hand, PUBounds transferred by CausalAdapUCB to larger hospitals
with more patient participants are less conservative, allowing these hospitals to refine their
exploration of treatment options and learn an unbiased optimal treatment strategy faster, using
fewer patient participants. As a result, CausalAdapUCB outperforms the other methods in terms
of both learning fairer treatment strategies and needing fewer participants to learn the optimal

ones.



Finally, it is critical that during the learning process of a treatment recommendation task we
maximize patients’ safety. Randomized treatment allocation increases the risk to participants,
since more subjects are administered with sub-optimal treatments. In contrast, CausalAdapUCB
is designed to adapt its treatment recommendations as more data are collected. In our
experiments, we show that this adaptive nature of the algorithm reduces the number of patients
administered with ineffective treatments, regardless of how similar or heterogeneous the hospitals
are, or how many treatment options are explored during the process. Therefore,
CausalAdapUCB improves the safety of these learning procedures compared to randomized

approaches or other state-of-the-art MAB methods.

From a translational perspective, the proposed framework can naturally serve as a coordination
mechanism for multi-site adaptive clinical trials or learning health system initiatives, enabling
hospitals to collaboratively update treatment allocation strategies using real-world evidence while

retaining patient-level data locally.

Limitations.

Deployment considerations. Practical deployment of the proposed framework would require
addressing several operational constraints. Communication overhead increases with the number
of participating hospitals and the frequency of communication rounds, and in real-world settings
this can be managed by tuning the communication interval or triggering updates only when
uncertainty is sufficiently high. In addition, although raw patient-level data are never exchanged,
the transfer of aggregated statistics still requires appropriate security safeguards, including
authenticated and encrypted communication, access control and auditing at the coordinating
institution to limit information leakage.

Our proposed method is an online algorithm suitable for treatment recommendation settings,

where patients arrive sequentially and decisions must be made dynamically as new outcomes are



observed. Because the algorithm updates its estimates iteratively after each treatment—outcome
pair, it requires an interactive setting that mimics real-time decision-making. As such, it cannot be
directly applied to static retrospective datasets without significant modifications, since those
datasets do not capture the sequential feedback loop that drives the algorithm. Consequently, we
evaluated the algorithm using a simulation environment. This simulator, constructed using real
Covid-19 data, closely replicates real-world scenarios. As a result, the findings from our
simulations provide valuable information on how our algorithm would have performed if it had
been deployed during the treatment recommendation task at the time. The development of
federated treatment allocation strategies that can directly learn from historical data and do not
require real-time interaction with patients is of great interest and currently part of our future work.
Moreover, sharing patients’ sensitive information across hospitals is a violation of their privacy,
and as a result designing a personalized treatment allocation strategy for every patient in the
federated setting is a demanding task. The safest first step towards this direction is to design
personalized strategies for each hospital. We therefore work under the assumption that patients
of the same hospital have similar reactions to every treatment. In this setting, we show that at the
population level our treatment allocation policy performs optimally, since it manages to decrease
the number of patients treated with sub-optimal treatments and affect individual patient outcomes.
Extending our work to patient-level frameworks that design personalized treatment allocation
strategies for each individual patient while protecting their privacy constraints is part of our future

work.

4. CONCLUSION

In this paper, we propose an adaptive federated learning strategy for treatment treatment
recommendation tasks. We formulate the problem as a federated Multi-Armed Bandit problem

where hospitals that potentially serve different patient populations cooperate to learn their local



optimal treatments. We test our proposed approach for treatment allocation tasks on a simulated
clinical trial environment created using real Covid-19 data from the Duke University Health System
and show that it outperforms other state of the art methods, by learning the optimal treatment for
each hospital faster and with fewer number of patient-participants, while also satisfying privacy,

fairness, and safety requirements.
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