
Simultaneous Intermittent Communication Control and Path
Optimization in Networks of Mobile Robots

Yiannis Kantaros and Michael M. Zavlanos

Abstract— In this paper, we propose an intermittent com-
munication framework for mobile robot networks. Specifically,
we consider robots that move along the edges of a connected
mobility graph and communicate only when they meet at the
nodes of that graph giving rise to a dynamic communication
network. Our proposed distributed controllers ensure inter-
mittent connectivity of the network and path optimization,
simultaneously. We show that the intermittent connectivity
requirement can be encapsulated by a global Linear Temporal
Logic (LTL) formula. Then we approximately decompose it
into local LTL expressions which are then assigned to the
robots. To avoid conflicting robot behaviors that can occur due
to this approximate decomposition, we develop a distributed
conflict resolution scheme that generates non-conflicting dis-
crete motion plans for every robot, based on the assigned local
LTL expressions, whose composition satisfies the global LTL
formula. By appropriately introducing delays in the execution
of the generated motion plans we also show that the proposed
controllers can be executed asynchronously.

I. INTRODUCTION

Communication among robots has been typically modeled
using proximity graphs and the communication problem is
often treated as preservation of graph connectivity [1]–[4].
Common in the above works is that point-to-point or end-to-
end network connectivity is required to be preserved for all
time. However, this requirement is often very conservative,
since limited resources may hinder robots from accomplish-
ing their assigned goals. Motivated by this fact, in this
paper we propose a distributed intermittent communication
protocol for mobile networks. In particular, we consider that
robots move along the edges of a connected mobility graph
and communicate only when they meet at the nodes of this
graph giving rise to a dynamic communication network.
We design distributed controllers that ensure intermittent
communication of the network while minimizing at the same
time the distance traveled between meeting points. We show
that intermittent communication can be captured by a global
Linear Temporal Logic (LTL) formula that forces robots
to meet infinitely often at the rendezvous points. Given
such an LTL expression, existing model checking techniques
[5], [6] can be employed in order to implement correct by
construction controllers for all robots.

LTL-based control synthesis and task specification for
mobile robots build upon either a bottom-up approach when
independent LTL expressions are assigned to robots [7]–[9]

This work is supported in part by the NSF awards CNS #1261828 and
CNS #1302284.

Yiannis Kantaros and Michael M. Zavlanos are with the Department of
Mechanical Engineering and Materials Science, Duke University, Durham,
NC 27708, USA. {yiannis.kantaros,michael.zavlanos}@duke.edu

or top-down approaches when a global LTL describing a
collaborative task is assigned to a team of robots [10], [11],
as in our work. Bottom-up approaches generate a discrete
high-level motion plan for all robots based on a synchronous
product automaton among all agents and, therefore, they
are resource demanding and scale poorly with the number
of robots. To mitigate these issues, we propose a novel
technique that approximately decomposes the global LTL
formula into local ones and assigns them to robots. Since
the approximate decomposition of the global LTL formula
can result in conflicting robot behaviors we develop a dis-
tributed conflict resolution scheme that generates discrete
motion plans for every robot based on the assigned local
LTL expressions. By appropriately introducing delays in
the execution of the generated motion plans we show the
proposed controllers can also be executed in an asynchronous
fashion. In contrast, most relevant literature assumes that
robot control is performed in a synchronous way [10],
[11]. Asynchronous robot mobility is considered in [12] by
introducing ‘traveling states’ in the discretized abstraction of
the environment decreasing in this way the scalability of the
proposed algorithm.

The most relevant works to the one proposed here are
presented in [13]–[16]. A centralized intermittent commu-
nication control scheme is presented in [13] that ensures
communication among robots infinitely often but it does not
scale well with the number of robots. In [14] a distributed
intermittent communication control scheme is proposed that
requires synchronization among robots, unlike the approach
developed here. Moreover, [14] considers a priori determined
communication points while in this paper, rendezvous points
are selected optimally, to minimize the distance traveled
by the robots. [15] proposes a distributed synchronization
scheme that allows robots that move along the edges of a
bipartite mobility graph to meet periodically at the vertices
of this graph. Instead, here we make no assumptions on the
graph structure on which robots reside or on the communica-
tion pattern to be achieved. On the other hand, [16] proposes
a receding horizon framework for periodic connectivity that
ensures recovery of end-to-end connectivity within a given
time horizon. As the number of robots or the size of the time
horizon grows, this approach can become computationally
expensive. To the contrary, our proposed method scales well
to large numbers of robots and can handle situations where
the whole network can not be connected at once, by ensuring
connectivity over time, infinitely often.

II. PROBLEM FORMULATION

Consider a team of N robots that move in a workspace
W ⊂ Rn according to ẋi(t) = ui(t), where xi(t) ∈ Rn

is the position of robot i, i ∈ {1, 2, . . . , N}, at time t and
ui(t) ∈ Rn is a control input. Also, consider L locations
in W denoted by `j , j ∈ {1, 2 . . . , L} located at positions
µj ∈ W and paths γij : [0, 1] → Rn that connect two
locations `i and `j such that γij(0) = µi and γij(1) = µj .
The union of locations µj and paths γij gives rise to an
undirected graph G = {V, E}, where the set of nodes V =
{1, 2, . . . , L} is indexed by the set of locations `j and the
set of edges E ⊆ V × V is determined by the paths γij
such that an edge (i, j) ∈ E exists if and only if a path γij
exists. Hereafter, we call G a mobility graph and we assume
that the robots move along its edges to possibly accomplish
a high-level task; see Figure 1(a). For example, robots may
travel along their assigned paths to monitor different parts of
a region and then coordinate to transmit their measurements
to a user. The presence of a network allows the robots to
transmit data in a multi-hop fashion, so that they do not have
to leave their assigned region. Applications of this framework
involve distributed coverage, state estimation, or surveillance.
In what follows, we assume that the mobility graph G is
connected.

A. Intermittent Communication

We assume that the robotic team is divided into M
subgroups. The indices i of robots that belong to the m-
th subgroup are collected in a set denoted by Tm, m ∈
{1, 2, . . . ,M} while every robot can belong to more than one
subgroups. Robots in a subgroup Tm can communicate only
when all of them are present simultaneously at a common
location `j . The locations `j where communication can take
place for the robotic team Tm are collected in a set Cm. This
way, a dynamic robot communication graph Gc = {Vc, Ec}
is constructed where the set of nodes Vc is indexed by
robots, i.e., Vc = {1, 2, . . . , N} and Ec ⊆ Vc × Vc is
the set of communication links that emerge when, e.g., all
robots in a team Tm meet at a common rendezvous point
`j ∈ Cm simultaneously. Given the robot teams Tm, a graph
GT = {VT , ET } is constructed whose set of nodes VT =
{1, 2, . . . ,M} is indexed by the teams Tm and set of edges
ET consists of links between nodes m and n if Tm∩Tn 6= ∅;
see Figure 1(b). We assume that the graph GT is connected in
order to ensure dissemination of information in the network.
Furthermore, we can define the set of neighbors of node
m ∈ VT by NTm = {n ∈ VT |(n,m) ∈ ET }. Also, for
robot i we define the set that collects the indices of all
other robots that belong to common teams with robot i
as Ni = {j|j ∈ Tm,∀m ∈ Si} \ {i}, and the set that
collects the indices of teams that robot i belongs to as
Si = {m|i ∈ Tm, m ∈ {1, 2, . . . ,M}}.

At a rendezvous point `j ∈ Cm communication takes place
when all robots in Tm are present there, simultaneously. Then
the communication graph Gc is defined to be connected over
time if all robots in Tm meet infinitely often at a region

(a) Mobility Graph G (b) Graph GT
Fig. 1. A graphical illustration of the problem formulation. Figure 1(a)
depicts the mobility graph G for a network of N = 5 robots (black dots)
divided into M = 5 teams. The robot teams are selected to be: T1 = {1, 2},
T2 = {2, 3}, T3 = {3, 4}, T4 = {2, 4, 5}, and T5 = {1, 5}. Red dots
represent communication points and the black dashed lines between two
sets Cm and Cn imply that there is at least one path γij that connects
communication points `i ∈ Cm and `j ∈ Cn. Figure 1(b) depicts the
associated graph GT .

`j ∈ Cm, for all m ∈ VT . Such a requirement can be captured
by the following global LTL expression:

φ = ∧∀m∈{1,2,...,M}
(
�♦

(
∨`j∈Cm(∧∀i∈Tmπ

`j
i)
))

, (1)

where π`j
i is an atomic proposition that is true when robot i

is sufficiently close to µj . In (1), ∧ and ∨ are the conjunc-
tion and disjunction operator, respectively, while � and ♦
stand for the temporal operators ‘always’ and ‘eventually’,
respectively. For more details on LTL, we refer the reader
to [5], [6]. In words, the LTL expression in (1) requires all
robots in a team Tm to meet infinitely often at at least one
communication point `j ∈ Cm, for all m ∈ VT .

B. Discretized Abstraction of the Workspace

We can model the environment in which robot i resides
by a weighted transition system (wTS) denoted by wTSi that
is defined as follows

Definition 2.1 (weighted Transition System):
A weighted Transition System wTSi is a tuple(
Qi, q

0
i ,Ai,→i, wi,AP, Li

)
where: (a) Qi =

{q`ji }∀`j∈Cm,∀m∈Si is the set of states, where a state
q
`j
i indicates that robot i is at `j ; (b) q0i ∈ Qi is the initial

state of robot i; (c) Ai is a set of actions. The available
actions at state q

`j
i are “wait” and “go to state q`ki ” for

every k such that (j, k) ∈ E ;1(d) →i⊆ Qi ×Ai ×Qi is the
transition relation; (e) wi : Qi×Qi → R+ is a cost function
that assigns weights/cost to each possible transition in wTS.
These costs are associated with the distance between two
states q`ji and q`ki ; (f) AP is the set of atomic propositions;
and (h) Li : Qi → 2AP is an observation/output relation
giving the set of atomic propositions that are satisfied in a
state.

In what follows we give definitions related to wTSi, that
we will use throughout the rest of the paper.

1Throughout the rest of the paper, for the sake of simplicity we assume
that the mobility graph G is constructed so that there is a path from any
location `j to any `k , where q

`j
i ∈ Qi and q

`k
i ∈ Qi, that does not

pass though a location `e ∈ Cm for some m /∈ Si, for all robots i. This
assumption can be relaxed if we incorporate all communication points `j
in the set of states Qi.

Definition 2.2 (Infinite Path): An infinite path τi of wTSi

is an infinite sequence of states, τi = τi(1)τi(2)τij(3) . . .
such that τi(1) = q0i , τi(n) ∈ Qi, and (τi(n), ai, τi(n +
1)) ∈→i, for some ai ∈ Ai, ∀n.2

Definition 2.3 (Composition): Composition of M infinite
paths τm = τm(1)τm(2)τm(3) . . . , where m ∈ {1, . . . ,M},
denoted by τ = ⊗∀mτm is an infinite sequence of states
defined as τ = τ(1)τ(2) · · · = [τ(n)]

∞
n=1, where τ(n) =

(τ1(n), τ2(n), . . . , τM (n)).
Definition 2.4 (Cost): The cost of an infinite path τi of

a wTSi is Ji(τi) =
∑∞

n=1 wi(τi(n), τi(n + 1)). Similarly,
the cost incurred by the composition of N infinite paths τi
denoted by τ = ⊗∀i∈{1,2,...,N}τi is given by

J(τ) =
∑∞

n=0

∑N

i=1
wi(τi(n), τi(n+ 1)), (2)

Definition 2.5 (Projection): For an infinite path τ =
τ(1)τ(2)τ(3) . . . , we denote by Π|wTSi

τ its projection onto
wTSi, which is obtained by erasing all states in τ that do
not belong to Qi.

Definition 2.6 (Trace of infinite path): The trace of an in-
finite path τi = τi(1)τi(2)τi(3) . . . of a wTS wTSi, denoted
by trace(τi), is an infinite word that is determined by the
sequence of atomic propositions that are true in the states
along τi, i.e., trace(τi) = Li(τi(1))Li(τi(2))

Definition 2.7 (Motion Plan): Given an LTL formula φ, a
wTS wTSi both defined over the set of atomic propositions
AP , an infinite path τi of wTSi is called motion plan if
and only if trace(τi) ∈ Words(φ), where Words(φ) ={
σ ∈ (2AP)ω|σ |= φ

}
is defined as the set of words σ ∈

(2AP)ω that satisfy the LTL φ and |=⊆ (2AP) × φ is the
satisfaction relation. The relation trace(τi) ∈ Words(φ)
is equivalently denoted by τi |= φ.

The problem we address in this paper can be stated as:
Problem 1: Given any initial configuration of the robots

in the mobility graph G determine motion plans τi for all
robots i that satisfy global LTL expression given in (1),
i.e., communication graph Gc is connected over time and
minimize the total distance traveled by robots captured by
the objective function (2).

III. INTERMITTENT COMMUNICATION CONTROL

To solve Problem 1, known centralized model check-
ing techniques can be employed, that typically rely on a
discretized abstraction of the environment captured by a
wTS and the construction of a synchronized product system
among all robots of the network. As a result, such approaches
are resource demanding and scale poorly with the size of
the network. Therefore, a distributed solution is preferred
whereby discrete high-level motion plans for every robot can
be computed locally across the network. For this purpose,
notice first that although the global LTL formula (1) is not
decomposable with respect to robots, it can be decomposed
in local LTL formulas φTm associated with a robot team

2A finite path of wTSi can be defined accordingly. The only difference
with the infinite path is that a finite path is defined by an finite sequence
of states of wTSi.

Tm, which are coupled with each other by the conjunction
operator ∧. Specifically, we can write φ = ∧m∈VT φTm ,
where φTm is defined as

φTm = �♦
(
∨`j∈Cm(∧∀i∈Tmπ

`j
i)
)
, (3)

and forces all robots i ∈ Tm to meet infinitely often at at
least one rendezvous point `j ∈ Cm.

Given the decomposition of φ into local LTL formulas
φTm , every robot i ∈ Tm needs to develop motion plans τi
so that the composition of plans τi, ∀i ∈ Tm denoted by
τTm = ⊗i∈Tmτi satisfies the local LTL expression φTm , for
all m ∈ Si. In this way, we can ensure that the composition
of τi, ∀i ∈ {1, 2 . . . , N}, satisfies the global LTL expression
(1), since all local LTL expressions φTm are satisfied.

Motion plans τTm |= φTm , ∀m ∈ VT , can be constructed
using existing tools from model checking theory [5], [6].
However, notice that constructing plans τTm and τTn , ∀n ∈
NTm independently cannot ensure that the robots’ behavior
in the workspace will satisfy the global LTL formula (1).
The reason is that the local LTL formulas φTm in (3) are not
independent from the local LTL expressions φTn for which
it holds n ∈ NTm , since they are coupled by robots’ state
in their respective transition systems. For instance, assume
that n ∈ NTm and that robot i belongs to teams Tm and Tn.
Then robot i is responsible for communicating with the other
robots that belong to teams Tm and Tn at a communication
point in Cm and Cn, respectively. This equivalently implies
that the LTL expressions φTm and φTn are coupled due to
robot i through the atomic propositions π`j

i , ∀`j ∈ Cm and
π`k
i , ∀`k ∈ Cn. Consequently, generating plans τTm |= φTm

that ignore the LTL expressions φTn , ∀n ∈ NTm may result
in conflicting robot behaviors, since the projection of motion
plans τTm and τTn onto wTSi may result in two different
motion plans τi for a robot i ∈ Tm ∩ Tn, n ∈ NTm . This
means that cases where a robot i needs to be in more than
one states in wTSi simultaneously may occur.

To circumvent these issues, we propose a distributed
algorithm in Section III-B that implements free-of-conflict
discrete motion plans τi, for all robots i, so that the global
LTL expression φ is satisfied. These motion plans will be
constructed based on the prefix parts of motion plans τTm |=
φTm , constructed in Section III-A, for all m ∈ Si.

A. Optimal Automata-based Model Checking

Given an LTL formula φTm and the wTSi of all robots
i ∈ Tm a motion plan τTm |= φTm can be implemented
using existing automata-based model checking methods [5],
[6]. First the weighted Product Transition System (wPTS)
wPTSTm is constructed, which essentially captures all the
possible combinations of robots’ states in their respective
wTSi, ∀i ∈ Tm and is defined as follows:

Definition 3.1 (Product Transition System): Given
|Tm| weighted Transition Systems wTSik =(
Qik , q

0
ik
,Aik ,→ik , wik ,AP, Lik

)
, where ik ∈ Tm,

k = 1, 2, . . . , |Tm|, the weighted Product Transition
System wPTSTm = wTSi1 ⊗ wTSi2 ⊗ · · · ⊗ wTSi|Tm|

is

a tuple
(
QTm , q0Tm ,ATm ,−→Tm , wTm ,AP, LTm

)
where:

(a)QTm = Qi1 × Qi2 × · · · × Qi|Tm|
is the set of states;

(b) q0Tm = (q0i1 , q
0
i2
, . . . , q0i|Tm|) ∈ QTm is the initial state;

(c)ATm = Ai1 × Ai2 × · · · × Ai|Tm|
is a set of actions;

(d)−→Tm⊆ QTm × ATm × QTm is the transition relation

defined by the rule3

∧
∀ik

(
qik

aik−−→ik
q
′
ik

)

qTm

aTm=

(
ai1

,...,ai|Tm|

)
−−−−−−−−−−−−−−→Tmq

′
Tm

;4

(e)wTm(qTm , q
′

Tm) =
∑Tm

k=1 wi(Π|wTSik
qTm ,Π|wTSik

q
′

Tm);
(f)AP is the set of atomic propositions; and,(h)LTm =⋃

ik∈Tm Lik is an observation/output relation giving the set
of atomic propositions that are satisfied at a state.

Next the LTL formula φTm is translated into a Nondeter-
ministic Büchi Automaton (NBA) over 2AP denoted by BTm
[17], which is defined as follows:

Definition 3.2: A Nondeterministic Büchi Automaton
(NBA) BTm over 2AP is defined by the tuple BTm =(
QBTm

,Q0
BTm

, 2AP ,→BTm
,FBTm

)
where: (a) QBTm

is
the set of states; (b) Q0

BTm
⊆ QBTm

is a set of initial states;
(c) Σ = 2AP is an alphabet; (d)→BTm

⊆ QBTm
×Σ×QBTm

is the transition relation; and (e) FBTm
⊆ QBTm

is a set of
accepting/final states.

Once the wPTS wPTSTm and the NBA BTm that cor-
responds to the LTL φTm are constructed, a motion plan
τTm |= φTm can be found by checking the non-emptiness
of the language of the Product Büchi Automaton (PBA)
PTm = wPTSTm ⊗BTm [5], which is defined as follows:

Definition 3.3 (Product Büchi Automaton):
Given the product transition system wPTSTm =(
QTm , q0Tm ,ATm ,−→Tm , wTm ,AP, LTm

)
and the NBA

BTm =
(
QBTm

,Q0
BTm

, 2AP ,→BTm
,FBTm

)
, the Product

Büchi Automaton (PBA) PTm = wPTSTm ⊗ BTm is
a tuple

(
QPTm

,Q0
PTm

,−→PTm
,FPTm

)
where: (a)

QPTm
= QTm × QBTm

is the set of states; (b)
Q0

PTm
= q0Tm×Q

0
BTm

is a set of initial states; (c) −→PTm
⊆

QPTm
×ATm×2AP×QPTm

is the transition relation defined

by the rule:

(
qTm

aTm−−−→q
′
Tm

)
∧

qBTm

LTm

(
q
′
Tm

)
−−−−−−−→q

′
BTm


qPTm

=(qTm ,qBTm)
aTm−−−→PTm

q
′
PTm

=
(
q
′
Tm ,q

′
BTm

) ;

(d) FPTm
= QTm ×FBTm

is a set of accepting/final states.
To check the non-emptiness of the language of PTm

denoted by LPTm
= trace(wPTSTm) ∩ LBTm

and to find
the motion plan that both satisfies φTm and at the same time
minimizes J(τTm), we can employ existing model checking
methods that are based on graph search algorithms; see,
e.g., [18], [19]. Such motion plans can be written in a
prefix-suffix structure τTm = τ pre

Tm [τ suf
Tm]ω , where the prefix

part τ pre
Tm is executed only once and the suffix part τ suf

Tm is
repeated infinitely. In principle, in these approaches the PBA

3The notation of this rule is along the lines of the notation used in [5].
In particular, it means that if the proposition above the solid line is true,
then so does the proposition below the solid line.

4The state qTm stands for the state
(
qi1 , . . . , qi|Tm|

)
∈ QTm . The

state q
′
Tm is defined accordingly.

is viewed as a weighted directed graph with weights assigned
on each edge that are inherited by the function wTm . Then
finding the shortest path from an initial state to a final state
and projecting this path onto wPTSTm results in the prefix
part τ pre

Tm . The suffix part τ suf
Tm is constructed similarly by

computing the shortest cycle around that final state.

B. Conflict Resolution Coordination

As discussed in the beginning of Section III, constructing
motion plans τTm for all m ∈ Si, for all robots i can result
in conflicting robot behaviors. To overcome this issue, we
propose a distributed algorithm that resolves any conflicts in
the robot behavior introduced by the motion plans τTm and
constructs free-of-conflicts motion plans τi for all robots i
using the prefix parts τ pre

Tm constructed in Section III-A. The
general form of these motion plans is

τi =τi(1)τi(2) · · · = [τi(n)]∞n=1

=

[
X . . .XΠ|wTSip

k
Tm1

X . . .XΠ|wTSip
k
Tmj

X . . .XΠ|wTSip
k
Tm|Si|

X . . .X

]∞
k=1

=
[
pki

]∞
k=1

, (4)

such that τi(1) = q0i . In (4), pkTmj
is a finite path of wPTSTm ,

where mj ∈ Si and j ∈ {1, . . . , |Si|}. Also, X stands for a
finite path in which robot i waits at its current state in wTSi.
In (4), the concatenation of the paths X and pkTmj

, ∀mj ∈ Si
gives rise to the finite path pki . Hereafter, the e-th finite path
in pki is denoted by pk,ei where 1 ≤ e ≤ `, where ` stands for
the number of finite paths that appear in pki . The parameter
` is a priori selected to be ` = max {dTm}

M
m=1 + 1 for all

robots, where dTm denotes the degree of vertex m in the
graph GT . This particular choice for the parameter ` ensures
the construction of free-of-conflict motion plans, as it will
shown in Proposition 3.6. Moreover, we denote by pki (n)
the n-th state in the finite path pki , e.g., p1i (1) = p1,1i (1) =
τi(1) = q0i , by construction of τi. The same notation extends
to the infinite path τi.

In what follows we first describe the construction of the
finite paths pkTmj

and then we show how these finite paths
are ordered in pki giving rise to a free-of-conflict motion
plan τi. First, for the finite path pkTmj

it holds that pkTmj
=

τ pre,k
Tmj

, where τ pre,k
Tmj

is the prefix part of the motion plan
τkTmj

|= φTmj
constructed as per Section III-A. The index

k is introduced in τ pre,k
Tmj

to point out that the prefix part
is recomputed as the index k, introduced in (4) changes.
The reason it needs to be recomputed is because the initial
state of wPTSTmj

changes as k changes. Particularly, the
initial state of wPTSTmj

is the state q0,kTmj
= pkTmj

(1).
The state Π|wTSip

k
Tmj

(1) is selected so that all sub-paths
Π|wTSi

pkTmj
in pki chain up consistently. Hence, we select

the state Π|wTSi
pkTmj

(1) to be the final state of the previous
sub-path that appeared in pki . Consequently, the state pki (1)
coincides with the the final state of the finite path pk−1i . If

k = 1, then pki (1) refers to the initial position of robot i in
the workspace.

The finite paths pki are constructed sequentially across the
nodes `j ∈ V , as follows. Let S = {`1, . . . , `j , . . . } be an
ordered sequence of the nodes in the mobility graph G, so
that consecutive nodes (communication points) `j , `e in S are
associated with teams Tn and Tm, respectively, that belong
to neighboring nodes in the graph GT , i.e., `e ∈ Cm, `j ∈ Cn
and m 6= n and m ∈ NTn . We assume that S is known by
all robots and that every robot i is initially located at the first
communication point `e ∈ Cm, m ∈ Si that appears in S.
Assume that paths have been constructed for all nodes in S
that precede `e ∈ Cm and that currently all robots i ∈ Tm are
located at node `e and coordinate to construct the paths pki .
Since the mobility graph G is connected consecutive nodes
in S are connected by a path in G, this means that there is
at least one robot j ∈ Tn ∩ Tm, n ∈ NTm , which previously
constructed its path pkj by placing at its nTmj -th entry of

the finite path Π|wTSj
pkTm , i.e., p

k,nTmj

j = Π|wTSj
pkTm . Then

robot i constructs the path pki based on three rules. According
to the first rule, the path Π|wTSip

k
Tm will be placed at the

nTmi -th entry, which is selected to be equal to nTmj , which
is common for all robots j ∈ Tm [line 1, Alg. 1]. This
ensures that robot i and all other robots j ∈ Tm will meet
at a communication point that belongs to Cm, as it will be
shown in Proposition 3.8. The next step is to place the paths
Π|wTSip

k
Tg for all g ∈ Si\{m}, at the nTgi -th entry of pki . The

index n
Tg
i will be determined by one of the two following

rules. Specifically, according to the second rule if there exist
robots j ∈ Ni∩Tg that have already constructed the paths pkj ,
then the index nTgi is selected to be equal to nTgj , which is
common for all j ∈ Tg [line 4, Alg. 1]. Otherwise, according
to the third rule the path Π|wTSi

pkTg can be placed at any
free entry of pki indexed by n

Tg
i , provided that the nTgi -th

entry of all paths pkb of robots b ∈ Ni that have already
been constructed does not contain states Π|wTSb

pTh(k) with
h ∈ NTg [line 6, Alg. 1]. To highlight the role of this rule
assume that h ∈ NTg . Then this means that there exists at
least one robot r ∈ Th∩Tg . Then notice that without the third
rule [line 5], at a subsequent iteration of this procedure, robot
r ∈ Th ∩ Tg would have to place the paths Π|wTSr

pkTg and
Π|wTSr

pkTh at a common entry of pkr , i.e., nTgr = nThr , due to
the two previous rules and, therefore, a conflicting behavior
for robot r would occur. In all the remaining entries of pki ,
Xs are placed [line 8, Alg. 1].5 This procedure is repeated
until all robots i ∈ Tm have constructed their respective paths
pki . Once this happens, all robots i ∈ Tm depart from node
`e ∈ Cm and travel to the next communication point `c ∈ Cv ,

5If `j = `1 ∈ Cq , for some q ∈ VT , then initially, a randomly selected
robot j ∈ Tq creates arbitrarily its path pkj by placing the paths Π|wTSj p

k
Tq

at the nTqj -th entry of pkj , for all q ∈ Sj . Then the procedure previously
described follows. Moreover, depending on the structure of the graph GT
it is possible that a communication point `j ∈ Cm appears more than once
in S. In this case, robots i ∈ Tm construct the finite paths pki only the first
time that `j appears in S.

that appears in S that satisfies v ∈ Si [line 9, Alg. 1]. At
that point, all robots associated with the next communication
point in S are present at that node, and can coordinate to
compute their respective paths, as before. The procedure is
repeated sequentially over the nodes in S until all robots
have computed their paths.

When all robots have constructed their finite paths, they
exchange a set of indices denoted by Xi that collects the
indices nXi at which p

k,nX
i

i = X . If there exist paths
p
k,nX

i
i = X , for some nXi ∈

⋂
∀i Xi, they are discarded,

since in these paths all robots i wait at their current states.
Also, notice that in general, the finite paths pk,ei for some
e ∈ {1, . . . , `} may have different lengths across the robots
i. Consequently, this implies that two robots i, j that belong
to a team Tm may start executing the finite paths Π|wTSip

k
Tm

and Π|wTSj
pkTm at different time instants, assuming that

the robots pick synchronously their next states in their
transition systems. Avoiding such a case is crucial to ensure
intermittent communication within team Tm, as it will be
shown in Proposition 3.8. Therefore, given any index e we
can introduce states at the end of the finite paths pk,ei where
the robots wait in their current states so that all finite paths
pk,ei , for all robots i, have the same length. Communication
between the robots in the last two stages of the algorithm
can happen in the order defined by S, as before.

Remark 3.4: Note that communication according to S is
very predictable and inefficient as it, e.g., does not allow for
simultaneous meetings at the nodes of G. For these reasons
it is only used to construct conflict-free motion plans that
allow for much more efficient intermittent communication
between robots.

Remark 3.5 (Optimality): To construct the motion plans
τi in (4), we first decouple the global LTL formula (1) into
local LTL expressions φTm . Then, we construct finite paths
pkTmj

= τ pre,k
Tm , where τkTm |= φTm , for all mj ∈ Si, and their

concatenation (Algorithm 1) gives rise to the motion plans τi.
In principle, the paths pkTmj

connect the current configuration
of robots i ∈ Tmj to the closest meeting point `e ∈ Cmj

where all robots in Tmj
meet. Therefore, while these paths

minimize the total distance traveled between the current and
next meeting points, they do not optimize the infinite horizon
cost function (2). Consequently, the proposed solution is
suboptimal. To obtain an optimal solution that minimizes (2),
standard model checking techniques can be applied to the
global product system, that are known to be computationally
expensive. Suboptimality here is a consequence of problem
decomposition.

C. Correctness of the Proposed Algorithm

In this section, we show that the composition of the dis-
crete motion plans τi generated by Algorithm 1 satisfies the
global LTL expression (1), i.e., that the network is connected
over time. To prove this result, we need first to show that
Algorithm 1 can develop non-conflicting motion plans τi,
for which we have the following two results. Proposition
3.6 can be proved by following the steps of the proof of

Algorithm 1 Construction of motion plans τi = [pki]∞k=1 at
node `e ∈ Cm
Require: Already constructed finite paths pkj of robots j ∈
Ni;

Require: All robots in Tm are located at node `e ∈ Cm;
1: p

k,nTmi
i := Π|wTSi

pkTm , nTmi = nTmj , ∀j ∈ Tm;
2: for g ∈ Si \ {m} do
3: if there exist constructed paths pkj , j ∈ Ni ∩ Tg then

4: p
k,n
Tg
i

i := Π|wTSi
pkTg , nTgi = n

Tg
j , ∀j ∈ Tg;

5: else
6: p

k,n
Tg
i

i := Π|wTSip
k
Tg provided either pk,n

Tg
i

j = X ,

or pk,n
Tg
i

j = Π|wTSjp
k
Th with h /∈ NTg , ∀j ∈ Ni;

7: end if
8: Put Xs in the remaining entries;
9: Transmit path pki to a robot in Tm that has not

constructed its motion plan. If there are not such
robots, all robots i ∈ Tm depart from node `e ∈ Cm;

10: end for

Proposition 3.2 in [14] for the graph GT . Proposition 3.7
holds by construction of the finite paths pki and its proof,
which is omitted due to space limitations, is along the lines
of the proof of Proposition 3.3 in [14].

Proposition 3.6: Algorithm 1 can always construct finite
paths pki that consist of ` finite paths pk,ei where ` ≤
max {dTm}

M
m=1 + 1.

Proposition 3.6 shows also that the finite paths pki and
consequently, the motion plans τi depend on the node degree
of graph GT , and not on the size of the network.

Proposition 3.7: Algorithm 1 generates admissible dis-
crete motion plans τi, i.e., motion plans that are free of con-
flicts and satisfy the transition rule →i defined in Definition
2.1.

Proposition 3.8: The composition of motion plans τi gen-
erated by Algorithm 1 satisfies the global LTL expression (1),
i.e., connectivity of the robot network is ensured over time,
infinitely often.

Proof: To prove this result, it suffices to show that
τTm,∗ |= φTm , for all teams m ∈ VT , where φTm is defined
in (3) and τTm,∗ = ⊗∀i∈Tmτi, where the motion plans τi
are generated by Algorithm 1. Equivalently, according to
Definition 2.7 it suffices to show that

trace(τTm,∗) ∈ Words(φTm). (5)

First, assume that the prefix part τ pre,k
Tm of the motion plan

τkTm = τ pre,k
Tm [τ suf,k

Tm]ω |= φTm has been constructed, for all
k, using a standard model checking method as described
in Section III-A.6 By construction of the motion plans τi,
it holds that there is an index nTmi , 1 ≤ nTmi ≤ `, such

6Note that, throughout this proof, the only difference between the plans
τTm,∗ and τTm is that the first one has been derived through composing all
non-conflicting motion plans τi, ∀i ∈ Tm generated by Algorithm 1, while
the second one is the plan for all robots i ∈ Tm computed as described in
Section III-A.

that pk,n
Tm
i

i = Π|wTSip
k
Tm and an index eTmi , which are

common for all robots i ∈ Tm, such that pki (eTmi) =
Π|wTSi

pkTm(1) for all i ∈ Tm. Consequently, in the finite path
πk
Tm,∗ = ⊗∀i∈Tmpki there are indices nTm and eTm such that

πk,nTm

Tm,∗ = pkTm and πk
Tm,∗(e

Tm) = pkTm(1) for all k. Hence,
we conclude that all robots i ∈ Tm will start executing the
finite path pkTm , simultaneously.

Using the above observation, we examine the properties
of the finite word that is generated by the team Tm when the
finite path pkTm is executed. Let wk

Tm ∈ (2AP)∗ be a finite
word defined as wk

Tm = trace(τ pre,k
Tm) or, equivalently, by

construction of the finite paths pkTm , wk
Tm = trace(pkTm).

Since τkTm |= φTm and by construction of the prefix part
τ pre,k
Tm for all k, we have that the infinite word σTm =
w0
Tmw

1
Tmw

2
Tm · · · ∈ (2AP)ω satisfies

σTm ∈ Words(φTm). (6)

Next, notice that between the execution of the finite paths
pkTm and pk+1

Tm robots i ∈ Tm will traverse through some
states of their respective wTSs that are determined by τTm,∗
until the state pk+1

Tm (1) is reached. In other words, the team
of robots Tm does not execute consecutively the finite paths
pkTm and pk+1

Tm . Now, we need to show that these intermediate
transitions that robots make are admissible in wPTSTm and
do not violate φTm . These transitions are admissible as
implied by Proposition 3.7. Also, they cannot violate φTm ,
since the LTL expressions φTm in (3), for all m ∈ VT , do
not include the negation operator ¬ in front of the atomic
propositions π

`j
i defined in Section II-A. Therefore, this

equivalently means that as the robots i ∈ Tm execute the
motion plan τTm,∗ they will eventually pass through all
states determined by the finite paths pkTm , for all k, without
violating φTm . Consequently, this means that as the robots
i ∈ Tm move according to the motion plan τTm,∗, the gen-
erated trace trace(τTm,∗) will certainly include the atomic
propositions that are included in σTm ; see also Definition 2.6.
In other words, the sequence of atomic propositions σTm is
a subsequence of trace(τTm,∗) while the additional atomic
propositions that exist in trace(τTm,∗) cannot violate φTm ,
as previously discussed. Therefore, due to (6), we conclude
that (5) holds for all m ∈ VT , which completes the proof.

In general, the motion plans τi = [τi(n)]∞n=1 defined in (4)
are infinite paths of wTSi, since the finite paths pki need to be
updated for every k ∈ N. Therefore, in practice they are hard
to implement and manipulate. In the following proposition,
we show that the motion plans τi constructed by Algorithm
1 have a finite representation and they can be expressed in a
prefix-suffix structure, where the prefix part τ pre

i is traversed
only once and the suffix part τ suf

i is repeated infinitely.
Proposition 3.9: Algorithm 1 generates discrete motion

plans τi for all robots i in a prefix-suffix structure, i.e.,
τi = τ pre

i

[
τ suf
i

]ω
= [p1i . . . p

kp−1
i][p

kp

i . . . pks
i]ω .

Proof: To show this result it suffices to show that there
is an index ks, such that for all k ≥ ks, the finite paths pki are
repeated and, therefore, they do not need to be recomputed.
First, notice that such an index ks is common for all motion

plans τi. To illustrate this point assume that there is a robot
i ∈ Tm such that Π|wTSi

pkTm 6= Π|wTSi
pk+1
Tm and, therefore,

pki 6= pk+1
i . Since the paths pkTm are computed collectively

by all robots i ∈ Tm, the fact that Π|wTSi
pkTm 6= Π|wTSi

pk+1
Tm

means that there may be another robot j ∈ Tm such that
Π|wTSj

pkTm 6= Π|wTSj
pk+1
Tm and, consequently, pkj 6= pk+1

j ,
which may be propagated to all other robots in the network,
since graph GT is connected. Therefore, the index ks is
common for all robots.

In what follows, we show the existence of an index
ks defined above. By definition the finite paths pki are a
concatenation of ` finite paths, where the e-th finite path in pki
is denoted by pk,ei . Also, by construction we have that pk,ei 6=
X is constructed by computing a shortest path in a graph
associated with a PBA PTm from an initial to a final state in
PTm . Notice that the set of final states FPTm

in PTm remain
the same for all k, which is not the case for the set of initial
states Q0

PTm
= q0,kTm × Q

0
BTm

. The reason is that the initial
state q0,kTm of wPTSTm may change over k and, specifically,
we have that q0,kTm = pkTm(1) = (pk,ei1

(1), . . . , pk,ei|Tm|
(1)),

where the construction of state pkTm(1) was presented in
Section III-A. Since the number of possible combinations
of robots’ states in their respective wTS is finite, we have
that there is a finite number of possible initial states q0,kTm for
all m ∈ VT and, consequently, a finite number of possible
initial states q0,k = (pk,e1 (1), . . . , pk,eN (1)). Therefore, for
any e ∈ {1, . . . , `} there are always two indices ke1 and
ke2, ke2 > ke1 such that pk

e
1,e

i (1) = p
ke
2,e

i (1), for all robots
i, since otherwise that would mean that there are infinite
number of possible q0,k = (pk,e1 (1), . . . , pk,eN (1)) for any
e ∈ {1, . . . , `}. Since pk

e
1,e

i (1) = p
ke
2,e

i (1) and the distances
between communication points remains the same for all k,
we have that pk

e
1,e

i = p
ke
2,e

i . Then, the finite paths pk,ei , for
all e ∈ {1, 2, . . . , `}, for all robots i, and for all k ≥ ke2 have
already been constructed at k that satisfies ke1 ≤ k ≤ ke2; for
instance, for k = ke2 + 1 it holds that pk

e
2+1,e

i = p
ke
1+1,e

i . Let
e∗ = argmine{ke2}`e=1 = argmine{ke1}`e=1. Then, similarly,
we have that the finite paths pk,ei , for all e ∈ {1, 2, . . . , `},
for all robots i, and for all k ≥ ke∗2 have already been
constructed at k that satisfies ke

∗

1 ≤ k ≤ ke
∗

2 . Consequently,
this means that the finite paths pki for all k ≥ ke

∗

2 have
already been constructed as well at k that satisfies ke

∗

1 ≤
k ≤ ke

∗

2 ; for instance pk
e∗
1

i = p
ke∗
2

i and p
ke∗
1 +1

i = p
ke∗
2 +1

i .
Hence, the motion plans τi can be written in a prefix-suffix
structure τi = τ pre

i

[
τ suf
i

]ω
where τ pre

i = [p1i . . . p
ke∗
1 −1

i] and

τ suf
i = [p

ke∗
1

i . . . p
ke∗
2 −1

i p
ke∗
2

i], i.e., kp = ke
∗

1 and ks = ke
∗

2 ,
which completes the proof.

IV. ASYNCHRONOUS INTERMITTENT COMMUNICATION

In section III, we showed that if all robots i pick syn-
chronously their next states in wTSi according to the motion
plans τi, then the LTL expression (1) is satisfied. In this
section, we show that the generated motion plans can be
executed asynchronously, as well, by appropriately introduc-
ing delays in the continuous-time execution of τi. We omit

a formal proof of this result due to space limitations, and
instead validate the proposed asynchronous scheme through
numerical simulations in Section V.

Due to the asynchronous execution of the controllers, the
motion plans τi can be written as in (4) replacing the indices
n and k with ni and ki, respectively, which allows us to
model the situation where the robots pick asynchronously
their next states in wTSi. In the asynchronous execution of
the infinite paths τi robot i moves from state τi(ni − 1) ∈
Qi to τi(ni) ∈ Qi according to a continuous-time motion
controller ui(t) ∈ Rn that belongs to the tangent space of
γij at xi(t). Without loss of generality, assume that i ∈ Tm
and τi(ni) = q`ei , for some `e ∈ Cm. When robot i arrives at
state τi(ni) it checks if τj(ni) = Π|wTSj

pTm(fi) = q`ej for
all j ∈ Tm. If this is the case, then robot i waits at node `e
until all other robots j ∈ Tm are present there. When this
happens, or if there is at least one robot j ∈ Tm such that
τj(ni) 6= Π|wTSj

pTm(fi) = q`ej , then robot i moves towards
the next state τi(ni + 1).

V. SIMULATION STUDIES

In this section, a simulation study is provided that illus-
trates our approach for a network of N = 5 robots that
move along the edges of the mobility graph with L = 20
communication points as shown in Figure 2. The network
is divided in M = 5 teams which are T1 = {1, 2},
T2 = {2, 3}, T3 = {3, 4}, T4 = {2, 4, 5}, and T5 = {1, 5}
and, therefore, the graph GT is as shown in Figure 1(b).
Also, the mobility graph is constructed so that there is a
path γij from any node `i to any other node `j . Therefore,
the finite paths pkTm constructed as per Section III-A have
the form pkTm = q0,kTmqTm , where q0,kTm is the initial state
of wPTSTm constructed as defined in Section III-B and
qTm = (q

`j
i1
. . . q

`j
i|Tm|

) is a state where all robots of team
Tm are located at a common meeting point `j ∈ Cm. The
motion plans τi generated by Algorithm 1 have the following
structure:

τ1 =
[
pk1
1

]∞
k1=1

=
[
Π|wTS1τ

k1
T1 Π|wTS1τ

k1
T5X

]∞
k1=1

,

τ2 =
[
pk2
2

]∞
k2=1

=
[
Π|wTS2τ

k2
T1 Π|wTS2τ

k2
T2 Π|wTS2τ

k2
T4

]∞
k2=1

,

τ3 =
[
pk3
3

]∞
k3=1

=
[
Π|wTS3τ

k3
T3 Π|wTS3τ

k3
T2X

]∞
k3=1

,

τ4 =
[
pk4
4

]∞
k4=1

=
[
Π|wTS4τ

k4
T3XΠ|wTS4τ

k4
T4

]∞
k4=1

,

τ5 =
[
pk5
5

]∞
k5=1

=
[
XΠ|wTS5τ

k5
T5 Π|wTS5τ

k5
T4

]∞
k5=1

,

which can be written in a prefix-suffix structure with
ks = 2 and kp = 1, where the indices ks and kp are defined
in Proposition 3.9. The motion plans τi defined above are
depicted in Figure 2. Notice that the distances between any
two meeting points vary across G and so do the robots’
velocities and, therefore, robots pick asynchronously their
next states in wTSi. Consequently, this results in waiting
times for every robot i ∈ Tm at the meeting points `j ∈ Cm,
which are non-integer multiples of each other, for all m ∈

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

Fig. 2. Intermittent communication of N = 5 robots moving along the
edges of an underlying mobility graph. Red dots represent communication
points in each set Cm while edges between any two communication points
exist (not shown). Straight lines depict the robots’ trajectories as determined
by motion plans τi. The suffix part of τi is represented by dashed lines for
every robot i while solid lines depict a part of prefix structure, i.e., a path
that connects robots’ initial states to the respective suffix structure. The
prefix part of robots 4 and 5 coincides with their respective suffix part and,
therefore, there are no corresponding solid lines for them.

1 2 3 4 5
Teams

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

W
a
iti
n
g
T
im

e

1

2 22

3

3

4

5

4

1

5

(a) Waiting Time

0 50 100 150 200 250

Iterations

0

1

2

3

4

5

6

7

8

9

10

(b) Consensus

Fig. 3. Figure 3(a) depicts the waiting time of every robot i at a meeting
point `j ∈ Cm, for all m ∈ Si during a single execution of τ suf

i . Figure
3(b) illustrates the consensus of numbers vi(t).

VT . This illustrated in Figure 3(a), where, e.g., in team T4,
robots 2, 4, and 5 wait at a meeting point `j ∈ C4 for 0, 3.4,
and 0.8 time units, respectively. Observe also in Figure 3(a)
that robot 2 never waits at any meeting point.

To illustrate that under the proposed motion plans con-
nectivity is ensured over time, we implement a consensus
algorithm over the dynamic network Gc. Specifically, we
assume that initially robots generate a random number vi(t0)
and when all robots i ∈ Tm meet at `j ∈ Cm they perform
the following consensus update: vi(t) = 1

|Tm|
∑

e∈Tm ve(t).
Figure 3(b) shows that eventually all robots reach a consen-
sus on the numbers vi(t). Note also that applying existing
LTL-based planning would result in PBA constructed for all
robots with ΠN

i=1|Qi||QB | = 45360|QB | states, where QB

corresponds to the state-space of the NBA associated with
the global LTL expression in (1), which is hard to manipulate
in practice. This issue becomes more severe as the size of
the network increases.

VI. CONCLUSION

In this paper we considered the problem of controlling
intermittent communication in mobile robot networks. We
assumed that robots move along the edges of a mobility

graph and they can communicate only when they meet at
its nodes, which gave rise to a dynamic communication
network. The network was defined to be connected over
time if communication takes place at the rendezvous points
infinitely often which was captured by an LTL formula.
Then this LTL expression was approximately decomposed
into local LTL expressions which were assigned to robots.
To avoid conflicting robot behaviors that could occur due to
this approximate decomposition, we developed a distributed
conflict resolution scheme that generated free-of-conflicts
discrete motion plans for every robot that ensured connec-
tivity over time, infinitely often and minimized the distance
traveled by the robots. We also showed that the generated
motion plans can be executed asynchronously by introducing
delays in their continuous-time execution.

REFERENCES

[1] M. M. Zavlanos and G. J. Pappas, “Potential fields for maintaining
connectivity of mobile networks,” IEEE Transactions on Robotics,,
vol. 23, no. 4, pp. 812–816, 2007.

[2] L. Sabattini, N. Chopra, and C. Secchi, “Decentralized connectivity
maintenance for cooperative control of mobile robotic systems,” The
International Journal of Robotics Research, vol. 32, no. 12, pp. 1411–
1423, 2013.

[3] M. Zavlanos and G. Pappas, “Distributed connectivity control of
mobile networks,” IEEE Transactions on Robotics, vol. 24, no. 6, pp.
1416–1428, 2008.

[4] M. Zavlanos, M. Egerstedt, and G. Pappas, “Graph theoretic connec-
tivity control of mobile robot networks,” Proc. of the IEEE, vol. 99,
no. 9, pp. 1525–1540, 2011.

[5] C. Baier and J.-P. Katoen, Principles of model checking. MIT press
Cambridge, 2008, vol. 26202649.

[6] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT
press, 1999.

[7] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multi-agent motion tasks based on ltl specifications,” in 43rd IEEE
Conference on Decision and Control (CDC), vol. 1, The Bahamas,
December 2004, pp. 153–158.

[8] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[9] M. Guo, J. Tumova, and D. V. Dimarogonas, “Cooperative decen-
tralized multi-agent control under local ltl tasks and connectivity
constraints,” in 53rd Conference on Decision and Control (CDC), Los
Angeles, CA, USA, December 2014, pp. 75–80.

[10] Y. Chen, X. C. Ding, and C. Belta, “Synthesis of distributed control
and communication schemes from global ltl specifications,” in 50th
IEEE Conference on Decision and Control and European Control
Conference, Orlando, FL, USA, December 2011, pp. 2718–2723.

[11] M. Kloetzer and C. Belta, “Distributed implementations of global tem-
poral logic motion specifications,” in IEEE International Conference
on Robotics and Automation, Pasadena, CA, USA, May 2008, pp.
393–398.

[12] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic
constraints,” The International Journal of Robotics Research, vol. 32,
no. 8, pp. 889–911, 2013.

[13] Y. Kantaros and M. M. Zavlanos, “Intermittent connectivity control
in mobile robot networks,” in 49th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, USA, November, 2015,
pp. 1125–1129.

[14] ——, “A distributed ltl-based approach for intermittent communication
in mobile robot networks,” in American Control Conference, Boston,
MA, USA, July, 2016, pp. 5557–5562.

[15] M. M. Zavlanos, “Synchronous rendezvous of very-low-range wireless
agents,” in 49th IEEE Conference on Decision and Control (CDC),
Atlanta, GA, USA, December 2010, pp. 4740–4745.

[16] G. Hollinger and S. Singh, “Multi-robot coordination with periodic
connectivity,” in IEEE International Conference on Robotics and
Automation (ICRA), Anchorage, Alaska, May 2010, pp. 4457–4462.

[17] M. Y. Vardi and P. Wolper, “An automata-theoretic approach to auto-
matic program verification,” in 1st Symposium in Logic in Computer
Science (LICS). IEEE Computer Society, 1986.

[18] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Motion and
action planning under ltl specifications using navigation functions and
action description language,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Tokyo Big Sight, Japan,
November 2013, pp. 240–245.

[19] M. Guo and D. V. Dimarogonas, “Reconfiguration in motion planning
of single-and multi-agent systems under infeasible local ltl specifi-
cations,” in IEEE 52nd Annual Conference on Decision and Control
(CDC), Florence, December 2013, pp. 2758–2763.

