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Abstract—In this paper we propose a novel approach to the
problem of model-based source identification in steady-state
transport phenomena given a set of noisy measurements. We
formulate the problem as an optimization problem in function
space and utilize the adjoint method to calculate the gradient.
To obtain a finite dimensional representation of this problem we
employ proper orthogonal decomposition, which provides a small
number of basis functions that best approximate the function
space in which the concentration function lives. Similarly, we
parametrize the source function by nonlinear tower functions,
which allow us to reduce the size of the problem from thousands
of unknowns to a handful of variables. The above approximations
give rise to a low dimensional nonlinear optimization problem,
for which we provide explicit expressions for the gradient and
Hessian that can be used with available optimization techniques
to solve for the desired source function. We provide simulation
results that demonstrate a drastic reduction in computation time.
At the same time we are able to solve complex advection-diffusion
problems in non-convex environments.

I. INTRODUCTION

The problem of Source Identification (SI) refers to the esti-
mation of the location, intensity, and shape of a source using
a set of measurements of a quantity, such as concentration,
that is generated under the action of that source. The SI
problem has various applications spanning from environmental
protection [1] to human safety [2]. In addition, the SI problem
can be an important part in higher level tasks like search and
rescue missions and crowd evacuation [3].

The available literature on SI problems can be classified
depending on, e.g., the state of the transport phenomenon,
the number of sources, and their shape. Generally, SI prob-
lems that involve transport phenomena in transient-state are
more challenging than situations where transport is in steady-
state. Similarly, sources can be formulated as points of zero-
measure, or areas of nonzero-measure in the domain. While the
former assumption yields closed form solutions for the forward
model, the latter is more general as it provides information
about the area and shape of sources as well.

The problem of localizing a single point source in transient
state is considered in [4]–[6]. The solution in [4] relies on
the premise that a priori knowledge of the plausible source
locations is available. In a different track the authors of [5],
[6] utilize statistical signal processing techniques along with
a closed form solution of the mathematical model to attack
the SI problem. For problems with multiple point sources,
closed form solutions are not available and consequently
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optimization-based methods are used. One such method is [7]
in which the emphasis is on minimizing the number of required
measurements to localize a set of point heat sources. On the
other hand, the work in [8] presents an approach based on
sparse recovery techniques to localize multiple instantaneous
point sources in a transient heat transfer system.

More general problems that involve sources of arbitrary
shapes in arbitrary domains are typically solved numerically
using, e.g., the Finite Element Method (FEM). For example, in
[9] the FEM along with total variation regularization is used to
solve the SI problem. Similarly, in our previous work [10], we
proposed the RWDL1 algorithm which is an iterative sparse
recovery approach to the SI problem. Nevertheless, numerical
methods involving FEM are computationally very demanding.

In the current work, we propose a computationally efficient
method to solve SI problems that involve sources of arbitrary
shapes and intensities in generally non-convex environments.
Assuming the transport phenomenon is modeled by an el-
liptic PDE in steady-state and given a set of noisy point
measurements, we formulate the SI problem as an infinite
dimensional optimization problem in function space. In or-
der to numerically solve this problem, we approximate the
function spaces by finite dimensional subspaces. Specifically,
we use proper orthogonal decomposition to construct a set
of optimal basis functions for the concentration. Moreover,
we use nonlinear tower functions to model the source term.
These approximations lower the dimension of the problem
considerably at the expense of introducing nonlinearities. To
address this challenge, we provide a simple way to initialize
the nonlinear optimization problem that facilitates the identifi-
cation of the true sources. We also provide explicit expressions
for the gradient and Hessian that can be used with available
nonlinear optimization methods. Specifically, we employ the
adjoint method to obtain the gradient and a Lagrangian-based
procedure to obtain the second order information. Numerical
simulations demonstrate a significant improvement in compu-
tational cost while maintaining the ability of the method to
efficiently localize the sources. The main contribution of this
work is the proposed nonlinear formulation of the SI problem
and our ability to efficiently solve this problem for arbitrary
sources and non-convex environments.

The remaining parts of this paper are organized as follows.
In Section II, we define the SI problem and formulate it as an
optimization problem. Section III addresses the derivation of
the gradient in function spaces using the adjoint method. In
Section IV we determine finite dimensional basis functions to
approximate the concentration and source terms. In Section V,
we combine our previous developments to derive the explicit
first and second order information of the optimization problem.
Section VI contains the numerical simulations and finally
Section VII concludes the paper.



II. SOURCE IDENTIFICATION PROBLEM

A. Advection-Diffusion Partial Differential Equation

Let Ω ⊂ Rl be the domain of interest (1 ≤ l ≤ 3), and
assume the presence of sources is modeled by a nonnegative
function, s : Ω → R+, which is the sum of a finite number
of compactly supported functions.1 Let c : Ω → R+ be
the measurable quantity, such as concentration, generated by
this source function. Moreover, let the velocity at which this
quantity is transported via advection be q ∈ Rl and D ∈ R+

denote the diffusivity of the medium. Under a steady-state
assumption and applying a zero-valued Dirichlet condition
to the boundaries Γ of domain, we arrive at the following
Boundary Value Problem (BVP)

−D∇2c+ q · ∇c− s = 0 in Ω, (1a)
c = 0 on Γ. (1b)

In order for the BVP (1) to have a solution we assume that
s ∈ L2(Ω), i.e., s is twice integrable over Ω, and we define the
feasible set for the source term as S =

{
s ∈ L2(Ω) | s ≥ 0

}
.

Consider the set V ⊂ H1
0 (Ω), i.e., the set of functions

that themselves and their first weak derivatives are twice
integrable and have compact supports. Thus, every v ∈ V
satisfies the boundary condition (1b). Then, the BVP (1) can
be equivalently represented in variational form as

M(c; s) = a(c, v)− `(v; s) = 0, ∀v ∈ V, (2)

where a(· , ·) : V ×V → R is a non-symmetric continuous V-
elliptic bilinear form and ` : V → R is a continuous functional
defined as a(c, v) ,

∫
Ω
D∇c · ∇v dΩ +

∫
Ω
v q · ∇c dΩ and

`(v; s) , 〈`(s), v〉 ,
∫

Ω
sv dΩ, respectively. Note that we

have included the source term s in the definition of the model,
i.e., we write M(c; s) = 0, to emphasize that to any given
source term s corresponds a unique solution c. For theoretical
details, see e.g., [11, ch. 8,9]. In the next section, we formulate
the SI problem as a constrained optimization problem subject
to the advection-diffusion (AD) model introduced here.

B. Problem Definition

Consider m sensors deployed in the domain Ω that make
measurements of the concentration c, and let E ⊂ Ω be the
set of m compactly supported measurement areas enclosing
the sensor locations.2 Define, further, the indicator function
for the set E as χE(x) = 1 if x ∈ E and zero otherwise,
and let cm : Ω→ R+ be a function that assigns to each point
x ∈ Ω the noisy concentration measured by the sensor that is
deployed at that location, i.e., cm(x) = χE(x)(c(x) + ε(x)),
where the measurement noise ε(x) ∼ N (0, σ2) is spatially
independent and identically distributed. Then, the Source
Identification (SI) problem that we consider in this paper can
be defined as follows.

1For the problem considered here, we assume that the sources are strictly
positive functions. In general, sources can also be negative in the case of sinks.
Sinks can appear, e.g., in the presence of chemical reactions that consume a
contaminant. The treatment of the problem in the case of sinks is similar.

2Note that the compact measurement area around any given sensor can
be made arbitrarily small so that this sensing model approximates point
measurements.

Problem 2.1 (Source Identification): Given a set E of m
noisy measurements in the domain Ω, determine an estimate s
of the source term s̄ so that the AD modelM(c; s) = 0 defined
in (2) predicts the measurements cm as close as possible in
the least squares sense.

Problem 2.1 can be formulated as a constrained optimization
problem as follows. Let ‖c− cm‖2χE

,
∫

Ω
(c− cm)2 χE dΩ,

denote a measure of the distance between the predicted and
measured concentrations at the sensor locations and define the
cost functional J (c, s) : V × S → R+ to be optimized by
J (c, s) , 1

2 ‖c− c
m‖2χE

+ τR(s). Here, τ is a regularization
parameter and R(s) is the regularization functional. In this
work, we select R(s) , ‖s‖L1 =

∫
Ω
|s| dΩ =

∫
Ω
s dΩ.

This choice of regularization penalizes the size of the source
term. Optimization of the cost functional J (c, s) subject to
the model M(c, s) = 0 gives rise to the following problem

min
(c,s)∈V×S

J (c, s) s.t.M(c, s) = 0; (3)

J (c, s) =
1

2

∫
Ω

(c− cm)2 χE dΩ + τ

∫
Ω

s dΩ. (4)

In the following section we discuss how to obtain the
gradient of the cost functional J (c, s) that is necessary to
solve the optimization problem (3). This is done via the so
called Adjoint Method.

III. ADJOINT METHOD

The Adjoint Method allows us to solve problem (3) directly
in the reduced space S of source functions rather than in the
full space V × S of concentration and source functions. This
is possible by using the model M(c, s) = 0 to represent the
concentration c as a function of the source term s, i.e., c =
F(s), 3 and then moving along the gradient with respect to
s of the cost functional J (F(s), s) to determine the desired
source function that minimizes this cost functional.

Specifically, consider the Lagrangian of the constrained
optimization problem (3), defined by

L(c, s, w) = J (c, s) + a(c, w)− `(w; s), (5)

where w ∈ V is the Lagrange multiplier. In what follows,
we use the notion of a Gateaux derivative to differentiate the
Lagrangian (5); see e.g., [11, sec. 9.4].

The Adjoint Method consists of the following three steps
that yield an organized procedure for the calculation of the
desired gradient; see e.g., [12, sec. 4]. First, the Gateaux
derivative of the Lagrangian (5) with respect to the multiplier
w in an arbitrary direction v is set to zero. The two terms
containing w in the Lagrangian are the bilinear form a(c, w)
and the functional `(w; s). Gateaux differentiating a(c, w) with
respect to w we get 〈a′w(c, w), v〉 = d

dεa(c, w + εv)|ε=0 =
a(c, v), where we have used linearity of the bilinear operator
in each argument. Similarly, Gateaux differentiating `(w; s)
with respect to w we get 〈`′w(w; s), v〉 = `(v; s). Therefore,
the derivative of the Lagrangian with respect to w becomes

〈L′w, v〉 = a(c, v)− `(v; s) = 0, ∀v ∈ V. (6)

3As discussed earlier in Section II-A such a representation exists and is
unique.



Note that this equation is exactly the VBVP (2). Given a
source function s, the solution of (6) allows us to find the
corresponding concentration c.

Next, the Gateaux derivative of the Lagrangian (5) with
respect to c in an arbitrary direction h is set to zero. The
two terms containing c in the Lagrangian are J (c, s) and
a(c, w). Using equation (4), the Gateaux derivative of J (c, s)
with respect to c is 〈J ′c , h〉 =

∫
Ω
h (c − cm) χE dΩ.

Moreover, similar to the previous case the Gateaux derivative
of the bilinear form a(c, w) with respect to c is given by
〈a′c(c, w), h〉 = a(h,w) = a∗(w, h), where a∗(w, h) is the
adjoint operator of the bilinear form a(h,w). Therefore, the
derivative of the Lagrangian with respect to c becomes

〈L′c, h〉 = 〈J ′c , h〉+ a∗(w, h) = 0, ∀h ∈ V. (7)

Because of the appearance of the adjoint operator, this equa-
tion is called the adjoint equation and the procedure of
calculating the desired gradient is referred to as the Adjoint
Method. Given the concentration c obtained from (6), the
solution of (7) yields the corresponding multiplier w.

Finally, given the multiplier w obtained from (7), the desired
Gateaux derivative of the Lagrangian (5) with respect to s in
a direction q is 〈L′s, q〉 = 〈J ′s , q〉 − 〈`′s(w; s), q〉. Combining
equations (6) and (7) with this expression, the Adjoint Method
to calculate the gradient of the Lagrangian (5) with respect to
the source s can be summarized in the following procedure:

AD-PDE: a(c, v)− `(v; s) = 0 ∀v ∈ V, (8a)
Adjoint Eq: 〈J ′c , h〉+ a∗(w, h) = 0 ∀h ∈ V, (8b)
Gradient: 〈L′s, q〉 = 〈J ′s − `′s(w; s), q〉. (8c)

The set of equations (8) can be used to determine the
gradient of the cost functional J (F(s), s) that is necessary
to solve the SI problem (3). Since the variables c and s
of this optimization are functions that live in the infinite
dimensional function spaces V and S, respectively, in order to
solve this problem numerically it is necessary to approximate
V and S by finite dimensional subspaces Vd ⊂ V and
Sd ⊂ S determined by appropriate sets of basis functions.
This approximation allows us to parametrize the concentration
and source functions by a finite number of parameters that
depend on the basis functions that constitute Vd and Sd. We
discuss this parametrization in Section IV, while in Section V
we develop the numerical aspects of our solution, namely we
provide the first and second order information needed for the
optimization and discuss initialization.

IV. FINITE DIMENSIONAL APPROXIMATION

In order to obtain a finite dimensional approximation Vd
of the function space V we use Proper Orthogonal De-
composition (POD). For a survey of popular Model Order
Reduction methods, see e.g., [13]. At the same time, we
propose a novel nonlinear representation of the source term
s as a combination of compactly supported nonlinear tower
functions. This representation reduces the dimension of Sd
drastically, compared to classical approaches that utilize the
Finite Element Method (FEM).

Algorithm 1 Proper orthogonal decomposition

1: Given the set of snapshots C = {ci(x)}Ki=1;
2: Construct the covariance matrix C;
3: Solve the eigenvalue problem CQ = ΛQ such that

λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0 and Q = [q1 q2 . . . qK ];

4: The POD bases {ψk}Kk=1 are given via ψk =
∑K
i=1 q

k
i ci.

5: For N < K the reduced order model cd is given as cd ∈
Vd = span {ψk}Nk=1.

A. Model Order Reduction

A key component in POD is the availability of a set
of solutions of the PDE, also known as snapshots. Such
snapshots can be obtained using the FEM, which provides
the solution of the AD-PDE (1) for a given source term s.
Let C = {ci(x)}Ki=1 denote a set of K snapshots obtained by
solving the AD-PDE (1) for different realizations of the source
term, i.e., each ci(x) corresponds to the solution of the VBVP
(2) for a given si(x). The objective of POD is to generate a set
of optimal basis functions that span the space of snapshots C.
As explained in [14], the problem of generating these optimal
bases can be recast as an eigenvalue problem for the covariance
matrix C ∈ RK×K defined by [C]ij = 1/K

∫
Ω
ci cj dΩ. The

details of this procedure are presented in Algorithm 1.
As shown in [14, thm. 1], the i-th eigenvalue λi of matrix

C contains the average energy in the i-th mode. Moreover for
a given number N < K of basis functions, the POD bases
have the maximum possible energy and are optimal. Thus, for
a given fraction η, we can select the number N of required
bases as the smallest number such that

∑N
i=1 λi/

∑K
i=1 λi ≥ η.

B. Parametrization

Using the basis functions ψk that constitute Vd, cf. Algo-
rithm 1, we can represent the variable pairs {w, v} and {c, h}
by a finite number of parameters that can be used for numerical
optimization. Specifically, we define

wd = ψw, vd = ψ v, cd = ψ c, and hd = ψ h, (9)

where ψ = [ψ1 . . . ψN ] and w,v, c,h ∈ RN .
To parametrize the source function s we follow a different

approach. Specifically, we propose a novel nonlinear represen-
tation of this term as a combination of compactly supported
tower functions. The motivation for this representation is that
each compactly supported source area can be approximately
described by a very small number of parameters corresponding
to the intensity and shape of the source. In this paper we focus
on rectangular sources, although other geometric shapes can
also be used for this purpose.

In particular, let M be the number of basis functions used
to approximate the source term in the domain Ω ⊂ Rl and
consider two parameters

{
xj , x̄j

}
for each basis function,

where xj , x̄j ∈ Rl and j ∈ {1, . . . ,M}. We define the
compactly supported tower functions as φj(x; xj , x̄j) = 1
if xj ≤ x ≤ x̄j and zero otherwise, where the inequalities
are component-wise and xj ≤ x̄j . Then, we can approximate



the desired source term by sd(x) =
∑M
j=1 βjφj(x; xj , x̄j),

where we require βj ≥ 0 so that sd ∈ S. We denote by
p = (β1,x1, x̄1, . . . , βM ,xM , x̄M ) the parameters associated
with the source term. For example if Ω ∈ R2, then p ∈ R5M .
We assume that we know an upper bound M on the number
of sources that exist in the domain. If such a bound is not
available, then a sufficiently large M can be used.

Substituting the above approximations cd and sd of the
concentration and source functions c and s in (3), we obtain
a finite dimensional counterpart of the SI problem as

min
c,p

J(c,p) (10)

s.t. M(c,p) = 0,

βj ≥ 0, l ≤ xj ≤ x̄j ≤ u,

where j ∈ {1, . . . ,M} and l,u ∈ Rl are the lower
and upper bounds on the coordinates of domain. Moreover,
J : RN×5M → R is defined as J(c,p) = J (cd, sd) and
M : RN×5M → RN is defined as M(c,p) = M(cd, sd),
where the dimensions are given for 2D case.

V. NUMERICAL OPTIMIZATION

The optimization problem (10) can be solved using a variety
of available nonlinear optimization algorithms. Any such algo-
rithm requires first and possibly second order information, i.e.,
the gradient and Hessian, as well as appropriate initialization
since the problem is nonlinear. In this section we develop those
necessary components in order to solve (10) numerically. All
calculations are done in reduced space, by incorporating the
AD constraint directly in the analysis; see Section III. As a
result, only the bound constraints in (10) need to be considered
explicitly for numerical optimization.

A. First Order Information

In Section III we discussed the Adjoint Method to obtain
the gradient of problem (3) when the variable s is a function
that lives in the infinite dimensional function space S. Here,
we employ the approximations Vd and Sd of Section IV to
obtain a finite dimensional counterpart of equation (8). First
we substitute the approximations (9) into equation (8a) to
get a(cd, vd) − 〈`(sd), vd〉 = 0, ∀vd ∈ Vd, which after
simplification yields

∑N
k=1 cka(ψk, ψi) − 〈`(sd), ψi〉 = 0

for all i ∈ {1, . . . , N}. Writing the above equations for all
i ∈ {1, . . . , N} in matrix form we obtain

Ac = b, (11)

where A ∈ RN×N . Thus the finite dimensional model in
equation (10) is given explicitly as M(c,p) = Ac−b(p) = 0.
The uniqueness of the solution for the AD-PDE (1) problem
translates to the invertibility of matrix A.

Similarly, for the adjoint equation (8b) utilizing equation
(9) we get 〈J ′c , ψi〉 +

∑N
k=1 wka

∗(ψk, ψi) = 0 for all i ∈
{1, . . . , N}. Again writing the equations for all i in matrix
form we obtain

ATw = −d, (12)

where the transpose sign appears because of the adjoint
operator in the equations.

Algorithm 2 Adjoint Method for gradient

1: Given the vector of parameters p;
2: Solve Ac = b for the concentration coefficients;
3: Solve ATw = −d for the Lagrange multipliers;
4: Compute the desired gradient ∇pJ̄ .

Given values for the source parameters p, the linear sys-
tems of equations (11) and (12) can be used to obtain the
concentration and Lagrange multipliers. This information can
be used in (8c) to calculate the desired gradient. In order to
simplify the notation and without loss of generality, we assume
a single source in a 2D domain given by sd(x) = β φ(x; x, x̄),
where x = (x1, x2) and x̄ = (x̄1, x̄2). Substituting the
approximations (9) and sd in the Lagrangian (5) we get
L(cd, sd, wd) = J (cd, sd) + a(cd, wd) − `(wd; sd). Then,
to obtain the finite dimensional counterpart of (8c) we need
to take the derivatives of L(cd, sd, wd) with respect to the
parameters p of the source term sd. The terms that contain
sd are J (cd, sd) and `(wd; sd). For the term J (cd, sd), from
equation (4) the only part involving the parameters of sd is the
regularization term

∫
Ω
sd dΩ = β (x̄1 − x1)(x̄2 − x2). Thus

∂J /∂x1 = −τβ(x̄2 − x2); similarly for the other parameters
in p. Same as before, substituting sd(x) in `(wd; sd) we get
`(wd; sd) =

∫ x̄1

x1

∫ x̄2

x2
β wd(x) dx2 dx1. The derivative with

respect to β is straightforward and for the other parameters
we use Leibniz rule, e.g., ∂`/∂x1 = −β

∫ x̄2

x2
wd(x1, x2) dx2.

Then by equation (8c), ∂J̄/∂x1 = ∂J /∂x1− ∂`/∂x1, where
J̄(p) = J (F(sd), sd). The other derivatives can be calculated
exactly the same way. The process for calculating the desired
gradient ∇pJ̄ given p = (β, x1, x2, x̄1, x̄2) is described in
Algorithm 2.

If there are multiple sources, i.e., if M > 1, we can calculate
the gradients for each basis function separately. This follows
from the rule for differentiating sums. Moreover if Ω ⊂ R3,
we can exactly follow the same steps to calculate the gradient.

B. Second Order Information

Including second order information in the optimization, can
make the solution of the SI problem (10) more efficient and
accurate. Such information can be in the form of the Hessian
H = ∇ppJ̄ of the cost function itself, or in the form of
Hessian-vector products Hu, for some vector u, that is used
in the optimization procedure, see e.g., [15, ch. 7]. We use
the procedure to calculate the Hessian-vector multiplication
here since it provides an organized approach to incorporate
the model into the Hessian calculations. Specifically using the
Lagrangian (5), we can devise a procedure to calculate the
product Hu for a given vector u as explained in Algorithm 3,
see, e.g., [16]. The derivatives appearing in this algorithm can
be calculated in the exact same way as previous derivations.

C. Initialization

Appropriate initialization is critical for the solution of
nonlinear optimization problems, such as (10), since otherwise
the solution can get trapped in undesirable local minima. In



Algorithm 3 Hessian-vector multiplication

1: Given the vector u;
2: Compute h2 = Mpu;
3: Solve Ah1 = h2;
4: Compute h3 = ∇2

ccL h1;
5: Solve ATh4 = −h3;
6: Calculate H u = MT

p h4 +∇2
ppL u.

this paper, we employ a result on the point source sensitivity
(SS) analysis of the SI cost functional presented in [17] for
initialization of our method. According to this idea, given
the set of measurements E in Section II-B, we can obtain
an approximate localization via a solution of the adjoint
equation. Specifically, we solve the linear system of equations
AT w̄ = −d̄, where w̄i =

∫
Ω
cm ψi dΩ for i ∈ {1, . . . , N},

to get the finite dimensional Lagrange multiplier function as
w̄d = ψ w̄. Then an approximate localization of the source is
obtained through thresholding as ŵd(x) = w̄d(x) if w̄d(x) ≤
α w̄min

d and zero otherwise, where w̄min
d = minx∈Ω w̄d(x) and

α ∈ (0, 1). Note that the thresholding parameter α determines
the number of possible source locations. As shown in the
simulations, this initialization has a great impact on the com-
putation time and final error. Moreover, it plays an essential
role in solving the SI problem for nonconvex domains.

VI. SIMULATIONS

In this section we provide numerical simulations to support
the applicability of the proposed procedure. We solve the
constrained nonlinear optimization problem (10), utilizing
MATLAB optimization toolbox that employs an interior-point
algorithm which accepts the Hessian-vector multiplication
information; see e.g., [15].

In order to quantify the performance of our method, we
report the uncovered source ratio eun and the false detection
ratio efd. The first term measures the fraction of the true source
s̄d that is left out by the estimated source sd and the second
term considers the parts of the estimated source sd that do not
overlap with the true source s̄d. In mathematical terms we have
eun = ‖s̄d − sd‖XF

/‖s̄d‖L2 and efd = ‖sd‖XΩ\F
/‖s̄d‖L2 ,

where F is the support set of s̄d and XF denotes its indicator
function defined in Section II-B. Note that any value eun < 1
indicates an overlap between the true and estimated sources.
Moreover, we define the signal to noise ratio in dBs as SNR =

20 log
(
‖c(x)‖χE

/‖ε(x)‖χE

)
.

In the simulations, we focus on 2D domains, i.e., Ω ⊂ R2.
In addition, we use a lattice of m equidistantly placed sensors
to acquire the measurements. We initialize the iterations via the
SS approach with α = 0.7; see Section V-C. To initialize the
algorithm, we place a small square inside each region provided
by the SS method. Moreover, we select the regularization pa-
rameter τ such that the weights of the data fidelity ‖c− cm‖2χE

and regularization R(s) terms in the objective (4) are roughly
the same.

A. Advection-Diffusion Transport

In this section we assume that the true sources are rectan-
gular and the domain Ω is a 1× 1 square area. Moreover, we
set the upper bound for the intensity parameter β to 10.

First we solve the SI problem for a single source in a
diffusion-dominated case, i.e., we set D = 1 and q = 0
in equation (1). In order to compare the simulation time
for different sizes of the FE mesh used to create the POD
snapshots, we use two different sizes of n = 41× 41 = 1681
and n = 101 × 101 = 10201. Moreover the POD parameters
are K = 100 and η = 0.95, which yield N = 11 and N = 12
for the two grid sizes respectively.

We set the true parameters of the source as p̄ =
(2, 0.3, 0.6, 0.4, 0.8). In table I, we have reported several
results with different measurement numbers and SNR values.
Generally the reconstruction accuracy measured by the uncov-
ered eun and false detection efd ratios increases as the number
of measurements m increases and deteriorates via the addition
of noise. Nevertheless, the most important observation is that
increasing the FE mesh size by a factor of 6 has a very low
impact on the computation time.

Next we apply our method to identify twin sources inside
the domain of interest. For this simulation, we assume a
constant velocity of q = (0.01,−0.025) for advection and
we set D = 3 × 10−3. The forward models for all of the
simulations with advection are generated using the DiffPack
C++ library [18]. We use an unstructured mesh with n = 1681
and we set K = 100 and η = 0.99, which yield N = 42.

Using an array of 7×7 noiseless measurements to initialize
the algorithm with the SS technique and setting τ = 10−3, the
algorithm takes 19.37 sec to solve the problem. The uncovered
and false detection ratios are eun = 0.593 and efd = 0.583.
Notice that the number of POD bases used here is almost 4
times larger than in the previous case. As it turns out, this
parameter has the primary impact on the runtime, since it
determines the size of the linear systems (11) and (12) that
are solved in each evaluation of the gradient and Hessian. In
simulations, it appears that the runtime grows linearly by N .

B. Source Identification in Nonconvex Domain

In this section, we study a general advection-diffusion
problem in a nonconvex domain. Note that since in the opti-
mization problem (10) we can only specify a convex feasible
region, addressing non-convex domains requires additional
consideration. We assume that the flow enters the domain with
constant inlet velocity of qin = (0.01, 0) from the top left edge
and solve for the flow pattern using a fluid dynamics model
with an unstructured mesh of n = 2492 points. Figure 1a
depicts the described domain and flow pattern. We use the
resultant velocity together with D = 1 × 10−5 in AD-PDE
(1). For POD we set K = 100 and η = 0.99, which yield
N = 44. We also assume a circular source with the radius of
0.07 and the center of (0.65, 0.825) shown in Figure 1d.

The key idea to obtain a solution for this non-convex domain
is to search for the source locally in convex subregions of the
domain that contain the possible source locations determined
by the SS method. Specifically, assuming a 15 × 15 array of



TABLE I: Exp. A-I - the results of parameter study for the diffusion-dominated SI problem

n m SNR (dB) τ x0 x eun efd time (sec)
41× 41 4× 4 ∞ 5× 10−7 (1, 0.375, 0.575, 0.425, 0.625) (1.57, 0.288, 0.577, 0.455, 0.745) 0.60 0.41 2.71
41× 41 7× 7 ∞ 1× 10−7 (1, 0.375, 0.6, 0.425, 0.65) (1.41, 0.257, 0.610, 0.447, 0.805) 0.43 0.42 1.72

101× 101 10× 10 ∞ 5× 10−7 (1, 0.375, 0.575, 0.425, 0.625) (1.48, 0.291, 0.595, 0.439, 0.748) 0.58 0.33 5.17
101× 101 10× 10 1.77 1× 10−6 (1, 0.325, 0.625, 0.375, 0.675) (1.26, 0.268, 0.605, 0.408, 0.745) 0.65 0.27 2.41
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Fig. 1: Exp. B - the contour plots for the advection-diffusion SI problem.

noiseless measurements and utilizing the SS method, we divide
the domain into two simple rectangular areas enclosing the top
left and bottom regions as depicted in Figure 1b. For the first
case containing the true source, the solution of the SI problem
for τ = 7 takes 21.9 sec, with eun = 0.72 and efd = 0.37. The
final solution for both cases is depicted in Figure 1c.

Assuming it is known that a single source is present in
the domain and referring to the Definition 2.1 of the SI
problem, we are interested in the solution that predicts the
measurements the best in the least squares sense. Denoting
the concentration prediction for these two source estimates
with c1d and c2d respectively, we have

∥∥c1d − cm∥∥χE
= 0.087

and
∥∥c2d − cm∥∥χE

= 0.210. These values indicate that indeed
the first solution is a better approximation of the true source.

VII. CONCLUSION

In this paper we proposed a computationally efficient algo-
rithm to address the Source Identification (SI) problem in a
steady-state transfer phenomenon. Given a set of noisy mea-
surements of the concentration, we formulated an optimization
problem that estimates the source function generating the mea-
sured concentrations in the domain. We used proper orthogonal
decomposition to obtain a finite dimensional approximation of
the function space of the concentration. Moreover, a set of
nonlinear basis functions were proposed to model the source

term. These approximations allowed us to formulate the SI
problem as a nonlinear optimization problem with a very
small number of unknowns. Our method presents a significant
improvement in terms of computational cost compared to
methods that use linear basis functions. At the same time, we
are able to solve SI problems in non-convex domains, which
has significant practical implications. The simulation results
demonstrate the effectiveness of the proposed approach.
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