
Distributionally Robust Clustered Federated Learning:
A Case Study in Healthcare

Xenia Konti1 Hans Riess2 Manos Giannopoulos1 Yi Shen3

Michael J. Pencina4 Nicoleta J Economou-Zavlanos4 Michael M. Zavlanos1,2,3

Abstract— In this paper, we address the challenge of hetero-
geneous data distributions in cross-silo federated learning by
introducing a novel algorithm, which we term Cross-silo Robust
Clustered Federated Learning (CS-RCFL). Our approach
leverages the Wasserstein distance to construct ambiguity sets
around each client’s empirical distribution that capture possible
distribution shifts in the local data, enabling evaluation of
worst-case model performance. We then propose a model-
agnostic integer fractional program to determine the optimal
distributionally robust clustering of clients into coalitions so
that possible biases in the local models caused by statistically
heterogeneous client datasets are avoided, and analyze our
method for linear and logistic regression models. Finally, we
discuss a federated learning protocol that ensures the privacy of
client distributions, a critical consideration, for instance, when
clients are healthcare institutions. We evaluate our algorithm
on synthetic and real-world healthcare data.

I. INTRODUCTION

The complex nature of healthcare systems and data presents
significant regulatory [1] and ethical [2] challenges associated
with the design and deployment of large-scale machine
learning models that need to comply with, e.g., the Health
Insurance Portability and Accountability Act (HIPAA) in
the United States or similar laws in other nations, which
generally prohibit the sharing of patient data across healthcare
organizations. At the cutting-edge, are distributed and privacy-
preserving machine learning systems, broadly known as
Federated Learning (FL) systems [3], which tackle the
regulatory problem of data-sharing by avoiding it altogether;
they exploit accumulated statistical information on relevant
patient populations or machine learning model parameters
that carry no patient-specific information.

It is well known that the design of effective machine
learning algorithms requires the availability of sufficient
data. Depending on the characteristics of the model and
the dimension of the feature space, a theoretical minimum
number of samples, called the sample complexity, is required
for a model to generalize to unseen data sampled from the
same distribution on which it was trained [4]. In practice,
however, such data are often unavailable. Federated learning
algorithms overcome this challenge by instantiating a cross-
silo collaboration across data centers, such as those housed
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within healthcare organizations, that allows sharing of data
insights rather than raw data and uses this distributed
knowledge to train better-performing models. These data
centers and the organizations they are housed in are often
referred to as clients; in healthcare systems they are simply the
hospitals. Among the many possibilities, FL has promising
applications in healthcare informatics [5] and smart healthcare
technologies such as remote monitoring, disease detection,
and medical imaging; see [6] for a survey.

An important challenge in the design of effective federated
learning algorithms is that the participating organizations
are often subject to statistically heterogeneous datasets. This
is, e.g., the case in healthcare applications, where hospitals
often attend to statistically different patient populations.
In an effort to ensure model fairness, meaning that the
learned local models are free of any possible biases that
may arise by aggregating models trained on different data
distributions, personalized federated learning algorithms have
been developed [7], that take advantage of collaboration
between hospitals while at the same time implementing ways
to mitigate bias. In healthcare applications, bias can be caused
by demographic, geographic, financial, educational, political,
and environmental differences across different healthcare
organizations and the patient populations they serve [8]. A
common approach to personalized federated learning is, what
is known as, Clustered Federated Learning (CFL) [9] that
reduces bias by clustering together and restricting collabo-
ration between hospitals that potentially have a common or
similar data-generating distributions.

In this work, we propose a new clustered federated learning
algorithm that accounts for both statistical heterogeneity in
the data of different participating organizations and statistical
sampling uncertainty (e.g., due to finite sampling) or other
distributions shifts in the local data of each individual organi-
zation. For this, we employ ideas from Distributionally Robust
Optimization (DRO) to construct an integer fractional program
that we solve to determine the optimal distributionally robust
clustering of clients into coalitions so that (i) the learned local
models generalize to unseen data sampled from distributions
that are different from, but close enough to, the training
ones and (ii) possible biases in the local models caused by
statistically heterogeneous hospital datasets are avoided. We
term our proposed algorithm Cross-Silo Robust Clustered
Federated Learning (CS-RCFL). We theoretically justify our
algorithm for two different types of models: linear regression
with absolute loss and logistic regression. We finally evaluate
our algorithm on both synthetic and real-world healthcare



data, and show that it outperforms related methods.

A. Related Work

1) Clustered Federated Learning (CFL): CFL methods
often construct clusters in rounds, potentially training models
for several epochs between consecutive rounds. This approach
was employed in [10] that iteratively clusters users by bi-
partitioning existing clusters at each round. To address the
high communication overhead of typical CFL methods [11],
more efficient algorithms have been recently developed. An
example is IFCA [12], which randomly initializes cluster
centers and assigns clients to the nearest one, though this
method is sensitive to center initialization. Similarly, FeSEM
[13] relies on an ℓ2-distance -based expectation maximization
(EM) algorithm. The convergence of these methods has been
studied in [14]. There are also works that deviate from model
similarity-based clustering, introducing alternative coalition
formation objectives [15]–[17] or incorporating robustness
notions to produce robust clustering schemes [18]–[20]. The
literature discussed above focuses on cross-device federated
learning, involving personal devices such as smartphones.
Instead, in this paper, we focus on cross-silo federated learning
that involves data centers affiliated with organizations [21]. In
cross-silo FL, global models are typically trained iteratively
with clients sharing locally fine-tuned versions. Clustered
cross-silo federated learning methods construct coalitions
during each round using model similarity measures [22], [23]
or game-theoretic incentive compatibility [24]. Common in
the methods discussed above is that they do not account for
possible distribution shifts between the training and test data.
In this paper, we address this challenge employing notions
from DRO.

2) DRO in Federated Learning: Interest in robust federated
learning from a Distributionally Robust Optimization (DRO)
perspective has grown recently. Agnostic FL [25] was the first
framework to optimize over the worst-case mixture of local
models, instead of assigning uniform or size-proportional
weights. An improved algorithm with less communication
overhead was introduced in [26], which uses periodic av-
eraging and samples a subset of clients at each round. By
relaxing the worst-case mixture of local models, [27] imposes
constraints on the weights determined by the superquantile.
Similar to our approach, but for non-clustered FL, [28], [29]
consider distribution shifts and rely on Wasserstein-DRO to
account for them. Here we extend this framework to clustered
FL by designing client coalitions that are robust to possible
uncertainties in the training data distributions.

II. BACKGROUND

A. Federated Learning

Federated learning (FL) is a privacy-centric distributed
learning framework. Its appeal is mostly attributed to its
scalable and decentralized nature, allowing for simultaneous
training of local models on local datasets that will, then, be
aggregated into a global model that combines the predictive
capabilities of its individual parts. At the same time, federated
learning guards individual users’ data by providing privacy

guarantees [30]. In the standard terminology, several clients
(e.g., hospitals) and one or more servers can form a FL system.
Communication takes place between the clients and the
server (vertical FL) and possibly between the clients directly
(horizontal FL). For instance, clients may upload parameters
to the server or download parameters or aggregations of
parameters that the server has received. As discussed before,
FL frameworks are also classified by the types of clients,
including mobile devices (cross-device FL) or data silos
managed by organizations (cross-silo FL). In this paper, we
develop a variation of the well-known FedAve [31] algorithm,
which aggregates individual models into global models by
taking weighted averages of model parameters; see Eq. (6).

B. Distributionally Robust Optimization (DRO)

We first recall some technical definitions from optimal
transport theory [32] in order to define distances between
distributions, essential to our problem. Suppose Q1,Q2 are
distributions supported on a subset Ξ of a euclidean space
with a chosen metric δ (e.g., the ℓ2-norm), and suppose
Γ(Q1,Q2) is the set of joint distributions on Ξ × Ξ with
marginals Q1 and Q2. Then, the 1-Wasserstein distance [33]
between Q1 and Q2 is defined as

W1(Q1,Q2) = infP∈Γ(Q1,Q2)

{∫
Ξ×Ξ

δ(ξ1, ξ2)dP(ξ1, ξ2)
}
.

We consider the problem of minimizing an objective
function under uncertainty. Suppose f : Rp × Ξ → R is
an objective function with deterministic decision variables
and uncertain parameters x ∈ Rp and ξ ∈ Ξ, respectively,
and suppose Q̂ is an estimated distribution of ξ ∈ Ξ. Where
robustness to distributional shifts is desired, a common
practice is to form ambiguity sets, that is sets P of probability
distributions, that effectively convert the objective function f
to an objective function of the form supQ∈P Eξ∼Q

[
f(x, ξ)

]
.

A typical choice for P is a ball of radius ε > 0 centered
around an estimated distribution Q̂ in the metric space of
probability measures with the W1 distance metric, denoted
by Bε(Q̂) = {Q : W1(Q, Q̂) ⩽ ε}, giving rise to the robust
optimization problem

min
x

supQ∈Bε(Q̂) Eξ∼Q
[
f(x, ξ)

]
. (1)

While solving (1) is generically computationally expensive,
a dual formulation can lead to tractable solutions.

Lemma 1 (Strong Duality [34]): Suppose Ξ ⊆ Rd and
f : Rm × Ξ → R is proper, convex, and lower semi-
continuous. Suppose Q̂ ∈ M(Ξ) is an estimated distribution
on Ξ. Consider the worst-case expectation problem

supQ∈Bε(Q̂) Eξ∼Q [f(ξ)] . (2)

Then, the dual formulation

inf
λ⩾0

{
λε+ Eξ′∼Q̂

[
supξ∈Ξ(f(ξ)− λδ(ξ′, ξ))

]}
(3)

has a zero duality-gap.
Thus, we can solve (3) to get a solution for (1). Finally,

we recall the dual formulation for both linear regression with
absolute loss [35] and logistic regression [36].



Lemma 2 (Linear regression [35]): Suppose lθ(x, y) =∣∣y − x⊤θ
∣∣. Then, infθ supQ∈Bε(P̂N ) E(x,y)∼Q[lθ(x, y)] is

equal the solution of the following optimization problem:

min
θ,α,b

αε+
1

N

∑N
i=1 bi

s.t. ∥θ∥22 + 1 ⩽ α2

yi − x⊤
i θ ⩽ bi,∀i ∈ N

− (yi − x⊤
i θ) ⩽ bi,∀i ∈ N

α, bi ⩾ 0,∀i ∈ N

θ ∈ B.

(4)

Lemma 3 (Logistic regression [36]): Suppose lθ(x, y) =
log(1+exp(−y ·xT θ)) and define a distance metric between
two data points (x, y) and (x′, y′) as d((x, y), (x′, y′)) =

||x − x′|| + κ |y−y′|
2 , where κ is a positive weight. Then,

infθ supQ∈Bε(P̂N ) E(x,y)∼Q[lθ(x, y)] is equal to the solution
of the following optimization problem:

min
θ,α,b

αε+
1

N

∑N
i=1 bi

s.t. lθ(xi, yi) ⩽ bi,∀i ∈ N

lθ(xi,−yi)− ακ ⩽ bi,∀i ∈ N

||θ||⋆ ⩽ α,∀i ∈ N

α, bi ⩾ 0,∀i ∈ N

θ ∈ B.

(5)

III. PROBLEM FORMULATION

Consider N hospitals (the clients in FL) and assume
that each hospital i ∈ {1, . . . , N} has data collected in
the set Di =

{
(x

(p)
i , y

(p)
i )

}|Di|
p=1

, where every patient p ∈
{1, . . . , |Di|} in the sample population of hospital i has
n features x

(p)
i ∈ Rn, e.g., height, weight, gender, blood

pressure, etc., and observations y
(p)
i ∈ R, e.g., their A1C.

For each hospital i, the patient population is described by
a true underlying nominal distribution, denoted by Pi, so
that (x(p)

i , y
(p)
i ) ∼ Pi, and an empirical distribution, denoted

by P̂i, that is obtained from the data in Di. We assume
that the features and observations are related via a common
underlying parametric model f , so that y(p)i = f(x

(p)
i ; θ∗i ),

where θ∗i ∈ Rn are the model parameters. Then, given a loss
function L, the goal of each hospital is to estimate the true
parameters of the model θ∗i that minimize the loss on the
underlying true data distribution. To do so, we formulate the
empirical risk minimization (ERM) problem

inf
θ∈Rn

E(xi,yi)∼P̂i

[
L (f(xi; θ), yi)

]
.

We consider a federated setting, where hospitals voluntarily
collaborate with each other in order to train more accurate
local models. To mitigate possible biases in the local models
that can be caused by differences in the patient populations
served by the hospitals, the hospitals form coalitions so that
knowledge is shared among hospitals with common or similar
data-generating distributions. These coalitions are coordinated
by a lead hospital. Specifically, the lead hospital aims to create
a coalition structure π : {1, . . . , N} → {S1, . . . , SK}, that

is a map from hospitals to K coalitions {S1, . . . , SK} that
satisfy S1 ∪ · · · ∪ SK = {1, . . . , N}, Sk ∩ Sk′ = ∅ for all
k ̸= k′, and Sk ̸= ∅ for all k ∈ {1 . . . ,K}. Then, π(i) = Sk

denotes the unique coalition Sk to which hospital i is assigned.
The hospitals participating in this coalition structure first use
their limited data to learn parameter estimates θlocal

i , which
we collect in a tuple θ =

(
θlocal
1 , . . . , θlocal

N

)
. Then, they share

these parameters with the lead hospital. The lead hospital
aggregates the local parameters for each coalition and returns
their mean to the member hospitals. Thus, every hospital
i belonging to coalition π(i) = Sk receives the common
estimated parameters

θSk
=

1

|Sk|
∑

i∈Sk
θlocal
i . (6)

Using the model parameters θSk
, the expected loss of hospital

i in coalition π(i) = Sk becomes

ℓi(θ, π) = E(xi,yi)∼P̂i

[
L
(
f(xi; θSk

), yi
)]
. (7)

The difficulty in solving the ERM problem defined before
lies in the fact that the lead hospital requires knowledge of the
empirical distributions P̂i for all hospitals. Even more, due to
finite-sample bias or other distributional shifts, whether the
empirical distributions P̂i are a good representation of the
underlying data-generating method also comes into question.
To model this uncertainty, for each hospital i, we construct
an ambiguity set that is a Wasserstein ball of radius εi ⩾ 0
around P̂i, denoted by Bεi(P̂i); see Section II. The radius of
the ambiguity set εi is selected by each hospital individually,
and represents how robust and conservative this hospital wants
to be when computing its loss. We argue that the mechanism
for dividing hospitals into coalitions implemented by the
lead hospital should take into account these ambiguity sets.
Recall that if a hospital i belongs to coalition π(i) = Sk,
then it receives model parameters θSk

. Using these model
parameters, hospital i can also compute an upper bound on
its expected loss by calculating the worst-case loss over all
the distributions in its ambiguity set, i.e.,

ℓrob
i (θ, π) = supQi∈Bεi

(P̂i) E(xi,yi)∼Qi

[
L(f(xi; θSk ), yi)

]
. (8)

Therefore, to address the aforementioned challenges, the lead
hospital should form clusters that minimize the accumulated
worst possible loss across all hospitals. We translate this
objective to the following optimization problem.

Problem 1: Given N hospitals, K coalitions, a loss func-
tion L, and an ambiguity set Bεi(P̂i) for each hospital i, com-
pute a coalition structure π : {1, . . . , N} → {S1, . . . , SK}
that minimizes the expected robust loss of all hospitals, i.e.,

min
π

∑K
k=1

∑
i∈Sk

ℓrob
i (θ, π)

s.t. S1 ∪ S2 ∪ . . . SK = {1, . . . , N}
Sk ∩ Sk′ = ∅, ∀k ̸= k′

Sk ̸= ∅, ∀k ∈ {1, . . . ,K}.



IV. COALITION FORMATION

In order to solve Problem 1, we introduce a binary variable
ai,k ∈ {0, 1} such that ai,k = 1 if hospital i is assigned
to coalition Sk and ai,k = 0 otherwise. Then, the coalition
formation Problem 1 can be reformulated into an integer
program (IP) with binary decision variables {ai,k}N×K as

min
ai,k

∑K
k=1

∑N
i=1 ai,kℓ

rob
i (θ, π)

s.t.
∑K

k=1 ai,k = 1, i = 1, . . . , N∑N
i=1 ai,k ⩾ 1, k = 1, . . . ,K

ai,k ∈ {0, 1}, i = 1, . . . , N, k = 1, . . . ,K.

(9)

A. Linear Integer Relaxation

In order to solve the optimization problem (9), we need
to compute the robust loss ℓrobi (θ, π) of hospital i for all
possible aggregated models of all possible coalition structures
π. This is a combinatorial problem that is very hard to solve.
To address this challenge, we assume that the loss function
L is convex with respect to the model parameters θ. As
shown in the following result, this assumption allows us to
relax problem (9) into a linear integer program that can be
efficiently solved.

Lemma 4: Suppose a parametric model f(x; θ) defined
by model parameters θ and suppose that L(f(x; θ), y) is a
loss function that is convex with respect to θ. Suppose also
binary variables ai,k ∈ {0, 1}, for all i ∈ {1, . . . , N}, k ∈
{1, . . . ,K}, with

∑K
k=1 ai,k = 1 for all i ∈ {1, . . . , N}, that

denote whether hospital i belongs to coalition Sk. Then,

ℓrobi (θ, π) ⩽∑N
j=1

aj,k∑N
j=1 aj,k

supQi∈Bεi
(P̂i)

E(x,y)∼Qi

[
L(f(x; θj), y)

]
.

Proof: See Appendix.

Define the loss

Li,j(θ) = supQi∈Bεi
(P̂i)

E(x,y)∼Qi

[
L(f(x; θj), y)

]
, (10)

which we interpret as the wort-case loss obtained when
hospital i evaluates the model parameters of hospital j over
the ambiguity set centered at the empirical distribution of
hospital i. In other words, Li,j(θ) is the robust transfer loss.
Then, we have the following result.

Theorem 1: As before, suppose a parametric model f(x; θ)
defined by model parameters θ and suppose that L(f(x; θ), y)
is a loss function that is convex with respect to θ. Then, for
the optimal value of problem (9) we have that it is upper
bounded by: ∑N,N,K

i,j,k=1
ai,k·aj,k∑N
j=1 aj,k

Li,j(θ).

Proof: Apply Lemma 4 directly to (9).

Replacing the objective function of the coalition formation
problem (9) by the upper bound in Theorem 1 and introducing
the binary variables ai,j,k ∈ {0, 1}, for all i ∈ {1, · · · , N},
j ∈ {1, · · · , N}, k ∈ {1, · · · ,K}, so that ai,j,k = 1 if

aik = 1 and ajk = 1, the coalition formation problem (9) can
be relaxed to the following linear integer fractional program:

min
ai,k

∑N,N,K
i,j,k=1

ai,j,k∑N
j=1 aj,k

Li,j(θ)

s.t.
∑K

k=1 ai,k = 1, i ∈ {1..N}∑N
i=1 ai,k ⩾ 1, k ∈ {1..K}

ai,j,k ⩽ ai,k, i, j ∈ {1..N}, k ∈ {1..K}
ai,j,k ⩽ aj,k, i, j ∈ {1..N}, k ∈ {1..K}
ai,k + aj,k − ai,j,k − 1 ⩽ 0, i, j∈{1..N}, k∈{1..K}
ai,k ∈ {0, 1}, i ∈ {1..N}, k ∈ {1..K}
ai,j,k ∈ {0, 1}, i, j ∈ {1..N}, k ∈ {1..K}.

(11)

In what follows, we analyze how to compute the robust
transfer loss in (10) for two specific model classes: linear
models with ℓ1-loss and logistic regression.

B. Example: ℓ1-linear regression

In the case of linear models, the robust transfer loss in
(10) can be written as

Li,j(θ) = supQi∈Bεi
(P̂i)

E(x,y)∼Qi

[
|θ⊤j x− y|

]
. (12)

To compute this loss, we can use the dual formulation
for linear regression with ℓ1-loss given in Lemma 2. More
specifically, for fixed model parameters θ we get

Li,j(θ) = εi · α+ E(x,y)∼P̂i

[
|θ⊤j x− y|

]
, (13)

where α is a decision variable in the dual formulation; see
Eq. (4). Substituting the robust losses of every model θj and
every hospital i into the coalition formation problem (11),
we can obtain the desired optimal coalition structure.

Finally, recall that every hospital is responsible for selecting
the value for the radius of its ambiguity set εi. If all hospitals
select the same radius for their ambiguity sets, the following
result holds true.

Proposition 1: Assume all hospitals use the same value
ε for the radius of their ambiguity sets. Then, the coalition
structure returned by the solution of the coalition formation
problem (11) is independent of ε.

Proof: See Appendix

C. Example: Logistic Regression

In the case of logistic regression models, the robust transfer
loss in (10) can be written as

Li,j(θ)=supQi∈Bεi
(P̂i)

E(x,y)∼Qi

[
log(1 + exp(−y · θTj x))

]
.

(14)

As in the case of linear models discussed above, here
too we can use the dual formulation for logistic regression
given in Lemma 3 to compute the robust loss in (14). More
specifically, for fixed model parameters θ we get

Li,j(θ) = εi · α+
1

N

∑N
i=1 bi, (15)

where both α and bi are decision variables in the dual
formulation; see Eq. (5). Like in the linear case, substituting



the robust losses of every model θj and every hospital i,
into the coalition formation problem (11), we can obtain the
desired optimal coalition structure.

V. FEDERATED LEARNING PROTOCOL

In this section, we discuss a protocol that describes how
the proposed clustered federated learning (CFL) method can
be implemented.

1) Training Phase: Initially, the hospitals use their local
data to learn estimates of their local model parameters
θlocal
i . Then, they share their estimated local model

parameters with the lead hospital and the coalition
formation phase begins.

2) Communication Phase: To solve the coalition formation
problem (11), the lead hospital requires a conservative
estimate of the loss of every local model computed on
the empirical distribution of every hospital, which is
the robust transfer loss defined in (10). To obtain these
robust losses, the lead hospital sends to all participating
hospitals the local model parameters it has received,
without revealing to which hospital each parameter set
belongs to; this way information privacy is maintained
as no hospital can determine which hospital trained
which model. When the hospitals have received the
model parameters of all other hospitals, they compute
for each model the worst expected loss over all patient
distributions in their local ambiguity set and send these
values to the lead hospital.

3) Coalition Phase: When the lead hospital has received
the worst-case expected losses of all models from all
hospitals, it can compute the optimal coalition structure
by solving the coalition formation problem (11). Then,
the lead hospital can compute the aggregate model
parameters for each coalition by (6) and send these
aggregate parameters to the member hospitals of each
coalition.

VI. EXPERIMENTAL RESULTS

A. Synthetic Data

We validate the effectiveness of the proposed CS-RCFL
algorithm for linear regression models with absolute (ℓ1)
loss and for logistic regression models. We compare the
performance of CS-RCFL to three benchmarks:

• The local models that the hospitals can learn from their
local data, without considering distribution shifts or
collaboration with other hospitals.

• The robust local models that the hospitals can learn by
minimizing their robust local loss without collaborating
with other hospitals.

• The non-robust clustered federated learning models that
the hospitals can learn, without considering distribution
shifts, i.e., using the non-robust losses to perform the
clustering. This benchmark coincides with the proposed
CS-RCFL algorithm for ε = 0.

Below we describe the synthetic datasets we generate for
the linear regression and logistic regression models. These

datasets are different because the first task is a regression
problem whereas the second one is a classification problem.

• Linear Regression Dataset. The dataset consists of
N = 10 hospitals. The number of samples n of
each hospital ranges between 50 and 150, emulating
hospitals with various sizes of patient populations. Every
data sample has 50 features. For each hospital i, we
generate the observations as y

(p)
i = w̃⊤

i x
(p)
i + η, where

xi ∼ N (µi,Σi) is sampled from a multi-variate normal
distribution with random covariance matrix and mean,
η ∼ N (0, σ2) is an i.i.d. noise with standard-deviation
σ = 5, and w̃i is the true weight of the model. To
simulate hospitals with similar joint distributions (that
can be clustered together), we select 3 different values
for w̃ and assign each hospital to one of the 3 true
weights.

• Logistic Regression Dataset. Like before, this dataset
consists of N = 10 hospitals and the number of
samples n of each hospital ranges between 100 and
200. Every data sample has 50 features. For each
hospital i, we generate the observations by the (log-loss)
probability P (y

(p)
i = 1|x(p)

i ) = [1 + exp(−w̃⊤
i x

(p)
i )]−1.

We generate labels based on a threshold on the log-
loss; if P (y

(p)
i = 1|x(p)

i ) > 0.5, then we set y(p) = 1,
otherwise y(p) = −1.

In our proposed CS-RCFL method, we select the radii
of the ambiguity sets of the hospitals depending on the
number of samples each one of them has. If n > 100, we set
ε = 1 for linear models and ε = 0.5 for logistic regression
models. Otherwise, we use ε = 2 for linear models and
ε = 1 for logistic regression models. For the robust local
models method, we use cross-validation to select the radii
of the ambiguity sets. Specifically, for linear models we get
the values of ε that we also use in the CS-RCFL algorithm,
while for logistic regression models we get ε = 0.05 if
n > 100 and ε = 0.1, otherwise. Note that cross-validation
is hard to implement in practice for the CS-RCFL algorithm
as this would require coordination with the lead hospital.
Instead, we selected conservative ambiguity sets (e.g., for
logistic regression models) so that the coalitions returned by
CS-RCFL are robust to possibly large distribution shifts.

In what follows, we examine the performance of our algo-
rithm for different numbers of coalitions K ∈ {3, 4, . . . , 10}.
Specifically, we compare our proposed CS-RCFL method
and the benchmarks described above on 10 testing datasets
that contain 100 data-samples each, generated from the same
distributions as the training data for each one of the N = 10
hospitals. In Fig. 1 we report the loss of each method averaged
over the 10 different test datasets. We observe that even
without federated learning, the use of DRO slightly improves
the performance of the local models, which is expected due
to the presence of distribution shifts between the training
and test data. On the other hand, our CS-RCFL method
consistently outperforms the other benchmarks by achieving
lower average model loss and lower variance. It is also worth
emphasizing that the models returned by CS-RCFL have lower



(a) (b)

Fig. 1: Loss of the CS-RCFL method and the benchmarks for (a) linear regression models with absolute (ℓ1-) loss and (b) logistic regression models.

loss compared to those returned by the clustered federated
learning method without robustness, showing that our method
is more effective in addressing distribution shifts. Moreover,
this improved performance is consistent for all values of K,
meaning that our algorithm is robust to the choice of the
numbers of coalitions, which is typically unknown. We finally
note that our algorithm is able to consistently recover the
true coalition structure in the case K = 3.

B. Real-world Healthcare Data

Next, we validate our algorithm on real-world healthcare
data. We use the open access demo version of the eICU
Collaborative Research Database, a multi-center database
comprised of de-identified health data of over 200,000
admissions to ICUs across the United States between 2014-
2015 [37]. Since not all patients in this dataset have the same
number of attributes, we select a subset of attributes and
construct a dataset with the patients that have those attributes
in common. This way, we end up with data from 174 different
hospitals with each hospital having between 3 and 18 patients
admitted to ICU. For each one of these patients we have access
to 57 different features, including demographic information
(e.g., age, sex, ethnicity), vital sign measurements, severity
of illness measures, and other diagnosis information (e.g.,
temperature, heart-rate, apachescore etc.). As seen in Fig.
2, the dataset consists of heterogeneous hospitals that serve
different patient populations.

An important feature contained in the dataset for every
patient is their length-of-stay in the ICU. Knowledge of
the length-of-stay in the ICU (similarly, knowledge of the
utilization of other hospital resources, such as PACUs or step-
down beds) can be used to streamline health system operations
and improve delivery of care. Therefore, in this experiment,
we focus on ICU length-of-stay prediction. Specifically, to
simplify the problem, we consider a logistic regression model
that can predict whether a patient will stay in the ICU longer
than 1 day or not. Since the number of data samples at each
hospital is very low, especially as it relates to the large number
of patient features, we consider hospitals that have at least
10 data samples each. Among those, we randomly select 20
hospitals to participate in the proposed federation. Moreover,

for these 20 hospitals, we reduce the number of features we
use to train the logistic regression models from 57 to 6. These
6 features include both demographic information (gender,
ethnicity, and age) and illness measurements (medicines, heart-
rate, and apachescore).

To decide the radius ε of the ambiguity set of each hospital
we use cross-validation. We get values of ε that range between
[0.001, 0.1] across the different hospitals. Small values (i.e.,
ε = 0.001) indicate that the training and validation sets are
similar and thus there are small distribution shifts in the data.
On the other hand, larger values (i.e., ε = 0.1) mean that
the training distribution is significantly different compared
to the validation one. To validate our method, we split the
data at every hospital into a training set containing 70% of
the data and a test set containing the rest. We then train our
CS-RCFL model along with the other benchmarks on the
training data and evaluate their loss on the corresponding
test sets at the local hospitals. We construct 3 different
experiments by randomly selecting 3 different training sets at
each hospital and, in Fig. 3, we report the average loss of all
models (averaged over the 3 experiments) for various coalition
number values K ∈ {1, . . . , 10}. We observe that the fact
that hospitals have very few data affects the performance of
the local models; both the local and local robust models suffer
from high loss and high variance. Moreover, we observe that
our proposed CS-RCFL model (with either ε = 0 or ε > 0)
outperforms the models trained locally at each hospital both
in average loss and in terms of variance. Finally, we see that
incorporating robustness, i.e., letting ε > 0, can on average
improve the loss of a clustered federated model.

VII. CONCLUSION

In this paper, we proposed a new clustered federated
learning method that assigns hospitals to coalitions allowing
hospitals in the same coalition to collaboratively train a com-
mon model. We assumed that the local data at each hospital
may be subject to local distribution shifts and may also be
statistically different across hospitals. Our proposed clustered
federated learning method designs coalitions that are robust
to distribution shifts in the local data and learns local models
that are unbiased in the presence of statistically heterogeneous



Fig. 2: Distribution of patients’ ethnicity at two different hospitals, an example that shows heterogeneity of patient populations across hospitals.

Fig. 3: Loss of the CS-RCFL method and the benchmarks for the logistic
regression model, evaluated on the eICU Collaborative Research Dataset.

hospitals. We evaluated our method on synthetic and real
healthcare data and showed that it outperforms models that are
trained solely on local data or federated models that are not
robust to distribution shifts. In future work, we will explore
the use of a broader class of models, including multi-layer
perceptrons, Neural Networks, etc.

APPENDIX

Proof of Lemma 4: Let ak =
∑N

i=1 ai,k, and let
Pi = Bεi(P̂i). Applying Jensen’s inequality, along with the
monotonicity of the supremum and the additive property of
expectation yields ℓrobi (θ, π) =

sup
Qi∈Pi

E(x,y)∼Qi

[
L
(∑N

j=1
aj,k

ak
θ⊤j x, y

)]
⩽

sup
Qi∈Pi

E(x,y)∼Qi

[∑N
j=1

aj,k

ak
L
(
θ⊤j x, y

)]
=

sup
Qi∈Pi

∑N
j=1

aj,k

ak
E(x,y)∼Qi

[
L
(
θ⊤j x, y

)]
=∑N

j=1
aj,k

ak
supQi∈Pi

E(x,y)∼Qi

[
L
(
θ⊤j x, y

)]
.

Proof of Proposition 1: From (13) and α =
√
||θi||22 + 1

from Lemma 2, if εi = ε ∀i ∈ {1, . . . , N}, then the objective

becomes
∑N

i=1 ε
√
||θi||22 + 1+∑K

k=1

∑N
i=1

∑N
j=1

ai,j,k∑N
j=1 aj,k

(
E(x,y)∼P̂i

[
|θ⊤j x− y|

])
.

In this case, the coalition structure returned by this method
is independent of the value of the radius of the ambiguity set
ε, since all the decision variables ai,j,k, aj,k are independent
of ε.
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